Skip to main content
Log in

A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked unit constructs an ultra-strong self-healing elastomer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is exceedingly desired, but difficult to construct self-healing materials with both excellent mechanical properties and healing efficiency, which are usually realized by using mutually exclusive methods. Here, we reconcile this contradiction by utilizing copper-bis-(imidazole-2-yl)-methane-urea (Cu-BIMU) locked units based on novel designed dynamic imidazole-urea bonds with coupled multiple noncovalent bonds (coordination bonds, ππ stacking bonds, and hydrogen bonds). The coordination of Cu(II) greatly reduces the electron-cloud density of imidazole, which lowers the free energy barrier of imidazole-urea bonds and promotes their reversible dissociation, as demonstrated by the density functional theory and small-molecule model reaction. The topological design of Cu-BIMU polyurethane (Cu-BIMU-PU), which concentrates multiple crosslinking-in-one locked unit to avoid the formation of excessive crosslinking sites to ensure high chain mobility, facilitates self-healing. Accumulative extensive intermolecular interactions endowed excellent mechanical properties to the resulting Cu-BIMU-PU elastomer with a tensile strength of 65.3 MPa, among the highest ever-reported value. This work provides a novel molecular design principle for fabricating high-performance dynamic polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang X, Zhan S, Lu Z, Li J, Yang X, Qiao Y, Men Y, Sun J. Adv Mater, 2020, 32: 2005759

    Article  CAS  Google Scholar 

  2. Chen M, Wang Z, Li K, Wang X, Wei L. Adv Fiber Mater, 2021, 3: 1–13

    Article  Google Scholar 

  3. Huang S, Lei D, Yang Q, Yang Y, Jiang C, Shi H, Qian B, Long Q, Chen W, Chen Y, Zhu L, Yang W, Wang L, Hai W, Zhao Q, You Z, Ye X. Nat Med, 2021, 27: 480–490

    Article  PubMed  Google Scholar 

  4. Zhang G, Feng H, Liang K, Wang Z, Li X, Zhou X, Guo B, Zhang L. Sci Bull, 2020, 65: 889–898

    Article  CAS  Google Scholar 

  5. Markvicka EJ, Bartlett MD, Huang X, Majidi C. Nat Mater, 2018, 17: 618–624

    Article  CAS  PubMed  Google Scholar 

  6. Lou J, Liu Z, Yang L, Guo Y, Lei D, You Z. Adv Funct Mater, 2021, 31: 2008328

    Article  CAS  Google Scholar 

  7. Pena-Francesch A, Jung H, Demirel MC, Sitti M. Nat Mater, 2020, 19: 1230–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, Miller PG, Ding X, Stowell CET, Kelly KM, Wang Y. Adv Mater, 2020, 32: 2003761

    Article  CAS  Google Scholar 

  9. Wu W, Zhang S, Wu Z, Qin S, Li F, Song T, Cao X, Wang ZL, Zhang L. Sci Bull, 2021, 66: 981–990

    Article  Google Scholar 

  10. Wojtecki RJ, Meador MA, Rowan SJ. Nat Mater, 2011, 10: 14–27

    Article  CAS  PubMed  Google Scholar 

  11. Xiong J, Thangavel G, Wang J, Zhou X, Lee PS. Sci Adv, 2020, 6: 12

    Article  Google Scholar 

  12. Luo J, Demchuk Z, Zhao X, Saito T, Tian M, Sokolov AP, Cao PF. Matter, 2022, 5: 1391–1422

    Article  CAS  Google Scholar 

  13. Zhang L, Guan Q, Shen A, Neisiany RE, You Z, Zhu M. Sci China Chem, 2021, 65: 363–372

    Article  Google Scholar 

  14. Zhang MQ, Rong MZ. Sci China Chem, 2012, 55: 648–676

    Article  CAS  Google Scholar 

  15. Sun L, Huang H, Guan Q, Yang L, Zhang L, Hu B, Neisiany RE, You Z, Zhu M. CCS Chem, 2022, 1–12

  16. Li CH, Wang C, Keplinger C, Zuo JL, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You XZ, Bao Z. Nat Chem, 2016, 8: 618–624

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Liang J, Jiang C, Liu Z, Sun L, Chen S, Xuan H, Lei D, Guan Q, Ye X, You Z. Natl Sci Rev, 2021, 8: nwaa154

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Huang T, Zuo H, Qian S, Guo Y, Sun L, Lei D, Wu Q, Zhu B, He C, Mo X, Jeffries E, Yu H, You Z. Adv Funct Mater, 2018, 28: 1805108

    Article  Google Scholar 

  19. Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N. Macromolecules, 2013, 46: 1794–1802

    Article  CAS  Google Scholar 

  20. Zhu Y, Shen Q, Wei L, Fu X, Huang C, Zhu Y, Zhao L, Huang G, Wu J. ACS Appl Mater Interfaces, 2019, 11: 29373–29381

    Article  CAS  PubMed  Google Scholar 

  21. Shi Z, Kang J, Zhang L. ACS Appl Mater Interfaces, 2020, 12: 23484–23493

    Article  CAS  PubMed  Google Scholar 

  22. Whiteley JM, Taynton P, Zhang W, Lee SH. Adv Mater, 2015, 27: 6922–6927

    Article  CAS  PubMed  Google Scholar 

  23. Cromwell OR, Chung J, Guan Z. J Am Chem Soc, 2015, 137: 6492–6495

    Article  CAS  PubMed  Google Scholar 

  24. Qu P, Lv C, Qi Y, Bai L, Zheng J. ACS Appl Mater Interfaces, 2021, 13: 9043–9052

    Article  CAS  PubMed  Google Scholar 

  25. Lai Y, Kuang X, Zhu P, Huang M, Dong X, Wang D. Adv Mater, 2018, 30: 1802556

    Article  Google Scholar 

  26. Zhang Q, Deng Y, Shi CY, Feringa BL, Tian H, Qu DH. Matter, 2021, 4: 1352–1364

    Article  CAS  Google Scholar 

  27. Yanagisawa Y, Nan Y, Okuro K, Aida T. Science, 2018, 359: 72–76

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Liu H, Cao Z, Li W, Huang X, Zhu Y, Ling F, Xu H, Wu Q, Peng Y, Yang B, Zhang R, Kessler O, Huang G, Wu J. Proc Natl Acad Sci USA, 2020, 117: 11299–11305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Huang X, Zhang X. Nat Commun, 2021, 12: 1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. An N, Wang X, Li Y, Zhang L, Lu Z, Sun J. Adv Mater, 2019, 31: 1904882

    Article  CAS  Google Scholar 

  31. Chen S, Bi X, Sun L, Gao J, Huang P, Fan X, You Z, Wang Y. ACS Appl Mater Interfaces, 2016, 8: 20591–20599

    Article  CAS  PubMed  Google Scholar 

  32. Song Y, Liu Y, Qi T, Li GL. Angew Chem Int Ed, 2018, 57: 13838–13842

    Article  CAS  Google Scholar 

  33. Wu J, Cai LH, Weitz DA. Adv Mater, 2017, 29: 1702616

    Article  Google Scholar 

  34. Li J, Sun J, Wu D, Huang W, Zhu M, Reichmanis E, Yang S. Adv Fiber Mater, 2019, 1: 71–81

    Article  Google Scholar 

  35. Liu K, Cheng L, Zhang N, Pan H, Fan X, Li G, Zhang Z, Zhao D, Zhao J, Yang X, Wang Y, Bai R, Liu Y, Liu Z, Wang S, Gong X, Bao Z, Gu G, Yu W, Yan X. J Am Chem Soc, 2021, 143: 1162–1170

    Article  CAS  PubMed  Google Scholar 

  36. Nie H, Schauser NS, Self JL, Tabassum T, Oh S, Geng Z, Jones SD, Zayas MS, Reynolds VG, Chabinyc ML, Hawker CJ, Han S, Bates CM, Segalman RA, Read de Alaniz J. J Am Chem Soc, 2021, 143: 1562–1569

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Tang D, Zhang J, Ni R, Xu L, He T, Lin X, Li X, Qiu H, Yin S, Stang PJ. J Am Chem Soc, 2019, 141: 17909–17917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deng Y, Zhang Q, Feringa BL, Tian H, Qu DH. Angew Chem Int Ed, 2020, 59: 5278–5283

    Article  CAS  Google Scholar 

  39. Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, Hayes W, Mackay ME, Rowan SJ. Chem Commun, 2009, 44): 6717–6719

    Article  Google Scholar 

  40. Mei JF, Jia XY, Lai JC, Sun Y, Li CH, Wu JH, Cao Y, You XZ, Bao Z. Macromol Rapid Commun, 2016, 37: 1667–1675

    Article  CAS  PubMed  Google Scholar 

  41. Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  42. Kresse G, Hafner J. Phys Rev B, 1994, 49: 14251–14269

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  44. Klimeš J, Bowler DR, Michaelides A. Phys Rev B, 2011, 83: 195131

    Article  Google Scholar 

  45. Ying H, Zhang Y, Cheng J. Nat Commun, 2014, 5: 3218

    Article  PubMed  Google Scholar 

  46. Jenekhe SA, Roberts MF. Macromolecules, 1993, 26: 4981–4983

    Article  CAS  Google Scholar 

  47. Ekeocha J, Ellingford C, Pan M, Wemyss AM, Bowen C, Wan C. Adv Mater, 2021, 33: 2008052

    Article  CAS  Google Scholar 

  48. Guo H, Han Y, Zhao W, Yang J, Zhang L. Nat Commun, 2020, 11: 2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan YJ, Godaba H, Chen G, Tan STM, Wan G, Li G, Lee PM, Cai Y, Li S, Shepherd RF, Ho JS, Tee BCK. Nat Mater, 2020, 19: 182–188

    Article  CAS  PubMed  Google Scholar 

  50. Neal JA, Mozhdehi D, Guan Z. J Am Chem Soc, 2015, 137: 4846–4850

    Article  CAS  PubMed  Google Scholar 

  51. Chen S, Sun L, Zhou X, Guo Y, Song J, Qian S, Liu Z, Guan Q, Meade Jeffries E, Liu W, Wang Y, He C, You Z. Nat Commun, 2020, 11: 1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Susa A, Bose RK, Grande AM, van der Zwaag S, Garcia SJ. ACS Appl Mater Interfaces, 2016, 8: 34068–34079

    Article  CAS  PubMed  Google Scholar 

  53. Ghosh T, Karak N. ACS Sustain Chem Eng, 2018, 6: 4370–4381

    Article  CAS  Google Scholar 

  54. Fan W, Jin Y, Shi L, Zhou R, Du W. J Mater Chem A, 2020, 8: 6757–6767

    Article  CAS  Google Scholar 

  55. Zhang L, Liu Z, Wu X, Guan Q, Chen S, Sun L, Guo Y, Wang S, Song J, Jeffries EM, He C, Qing FL, Bao X, You Z. Adv Mater, 2019, 31: 1901402

    Article  Google Scholar 

  56. Zhang Y, Yuan L, Guan Q, Liang G, Gu A. J Mater Chem A, 2017, 5: 16889–16897

    Article  CAS  Google Scholar 

  57. Liu J, Liu J, Wang S, Huang J, Wu S, Tang Z, Guo B, Zhang L. J Mater Chem A, 2017, 5: 25660–25671

    Article  CAS  Google Scholar 

  58. Li Y, Li W, Sun A, Jing M, Liu X, Wei L, Wu K, Fu Q. Mater Horiz, 2021, 8: 267–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFC2101800), the National Natural Science Foundation of China (52173117, 21991123), the Belt & Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai (20520741000), the Natural Science Foundation of Shanghai (20ZR1402500), the Ningbo 2025 Science and Technology Major Project (2019B10068), the Science and Technology Commission of Shanghai (20DZ2254900, 20DZ2270800) and the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program (LZA2019001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei You.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information for

11426_2022_1437_MOESM1_ESM.docx

A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked unit constructs an ultra-strong self-healing elastomer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Liu, Z., Neisiany, R.E. et al. A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked unit constructs an ultra-strong self-healing elastomer. Sci. China Chem. 66, 853–862 (2023). https://doi.org/10.1007/s11426-022-1437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1437-5

Keywords

Navigation