Skip to main content
Log in

Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Passivating the interfacial defects and reducing the interfacial non-radiative recombination losses are the keys to improving the photovoltaic performance of three-dimensional (3D) perovskite solar cells (PVSCs). Stacking two dimensional (2D) perovskites on 3D perovskite is a promising method for interfacial treatment that improves the stability and efficiency of PVSCs. Herein, we developed conjugated fluorinated benzimidazolium cation (FBIm+) which can be inserted between 3D perovskite and hole-transporting layer (HTL) to form 2D perovskite in situ. The 2D single crystal structures of (FBIm)2PbI4 and (FBIm)2PbBr4 were achieved and confirmed by single-crystal X-ray diffraction (XRD), while few single crystals of 2D perovskite based on imidazolium or benzimidazolium anchors have been reported. The 2D perovskite can passivate the interfacial defects, induce better crystallinity and orientation, conduct lower trap density and extend carrier lifetime. Furthermore, the energy level arrangement can be regulated by changing the counterion from iodide to bromide, which can efficiently improve the hole extraction and device performances. As a consequence, the best efficiency of 23.00% for FBImBr-incorporated devices was achieved, while only 20.72% for the control device. Meanwhile, the PVSCs modified by FBImBr displayed excellent environmental stability due to the constructed hydrophobic 2D perovskite layer which can effectively block moisture permeation. This work develops a new path to design novel conjugated organic passivants to form 2D/3D perovskite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo S, Yu J, Yu S, Sun R, Cao L, Liao WH, Wong CP. Adv Energy Mater, 2019, 9: 1803204

    Article  Google Scholar 

  2. Ahmadi M, Wu T, Hu B. Adv Mater, 2017, 29: 1605242

    Article  Google Scholar 

  3. Sun J, Wu J, Tong X, Lin F, Wang Y, Wang ZM. Adv Sci, 2018, 5: 1700780

    Article  Google Scholar 

  4. Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH. Nat Nanotech, 2014, 9: 687–692

    Article  CAS  Google Scholar 

  5. Xing Z, Meng X, Li D, Hu T, Hu X, Chen Y. Sci Bull, 2022, 67: 561–564

    Article  Google Scholar 

  6. Zhang F, Lu H, Larson BW, Xiao C, Dunfield SP, Reid OG, Chen X, Yang M, Berry JJ, Beard MC, Zhu K. Chem, 2021, 7: 774–785

    Article  CAS  Google Scholar 

  7. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    Article  CAS  Google Scholar 

  8. Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope MA, Eickemeyer FT, Kim M, Yoon YJ, Choi IW, Darwich BP, Choi SJ, Jo Y, Lee JH, Walker B, Zakeeruddin SM, Emsley L, Rothlisberger U, Hagfeldt A, Kim DS, Grätzel M, Kim JY. Nature, 2021, 592: 381–385

    Article  CAS  Google Scholar 

  9. Liu C, Huang Z, Hu X, Meng X, Huang L, Xiong J, Tan L, Chen Y. ACS Appl Mater Interfaces, 2018, 10: 1909–1916

    Article  CAS  Google Scholar 

  10. Liu F, Ding C, Zhang Y, Ripolles TS, Kamisaka T, Toyoda T, Hayase S, Minemoto T, Yoshino K, Dai S, Yanagida M, Noguchi H, Shen Q. J Am Chem Soc, 2017, 139: 16708–16719

    Article  CAS  Google Scholar 

  11. Huang Z, Hu X, Liu C, Tan L, Chen Y. Adv Funct Mater, 2017, 27: 1703061

    Article  Google Scholar 

  12. Yang Y, You J. Nature, 2017, 544: 155–156

    Article  CAS  Google Scholar 

  13. Park N. Adv Energy Mater, 2020, 10: 1903106

    Article  CAS  Google Scholar 

  14. Lee JW, Bae SH, De Marco N, Hsieh YT, Dai Z, Yang Y. Mater Today Energy, 2018, 7: 149–160

    Article  Google Scholar 

  15. Gao F, Zhao Y, Zhang X, You J. Adv Energy Mater, 2020, 10: 1902650

    Article  CAS  Google Scholar 

  16. Zhao Y, Ma F, Gao F, Yin Z, Zhang X, You J. Photon Res, 2020, 8: A1–5

    Article  CAS  Google Scholar 

  17. Su J, Cai H, Yang J, Ye X, Han R, Ni J, Li J, Zhang J. ACS Appl Mater Interfaces, 2019, 12: 3531–3538

    Article  Google Scholar 

  18. Zhang F, Zhu K. Adv Energy Mater, 2020, 10: 1902579

    Article  CAS  Google Scholar 

  19. Gong L, Yang J, Sheng W, Zhong Y, Su Y, Tan L, Chen Y. CCS Chem, 2022, 1–13

  20. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944–948

    Article  CAS  Google Scholar 

  21. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photon, 2019, 13: 460–466

    Article  CAS  Google Scholar 

  22. Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu SF. Nat Commun, 2018, 9: 3239

    Article  Google Scholar 

  23. Sheng W, Yang J, Li X, Zhang J, Su Y, Zhong Y, Zhang Y, Gong L, Tan L, Chen Y. CCS Chem, 2022, 1–12

  24. He T, Jiang Y, Xing X, Yuan M. Adv Mater, 2020, 32: 1903937

    Article  CAS  Google Scholar 

  25. Chao L, Niu T, Gao W, Ran C, Song L, Chen Y, Huang W. Adv Mater, 2021, 33: 2005410

    Article  CAS  Google Scholar 

  26. Gong C, Zhang L, Meng X, Xing Z, Rao L, Wang H, Huang Z, Tan L, Hu T, Hu X, Chen Y. Sci China Chem, 2021, 64: 834–843

    Article  CAS  Google Scholar 

  27. Ni Z, Bao C, Liu Y, Jiang Q, Wu WQ, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J. Science, 2020, 367: 1352–1358

    Article  CAS  Google Scholar 

  28. Cho AN, Park NG. ChemSusChem, 2017, 10: 3687–3704

    Article  CAS  Google Scholar 

  29. Zhuang J, Mao P, Luan Y, Yi X, Tu Z, Zhang Y, Yi Y, Wei Y, Chen N, Lin T, Wang F, Li C, Wang J. ACS Energy Lett, 2019, 4: 2913–2921

    Article  CAS  Google Scholar 

  30. Chen H, Liu T, Zhou P, Li S, Ren J, He H, Wang J, Wang N, Guo S. Adv Mater, 2020, 32: 1905661

    Article  CAS  Google Scholar 

  31. Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F, Huang J. Science, 2019, 365: 473–478

    Article  CAS  Google Scholar 

  32. Ma Y, Deng K, Gu B, Cao F, Lu H, Zhang Y, Li L. Adv Mater Interfaces, 2016, 3: 1600729

    Article  Google Scholar 

  33. Liu G, Zheng H, Ye J, Xu S, Zhang L, Xu H, Liang Z, Chen X, Pan X. ACS Energy Lett, 2021, 6: 4395–4404

    Article  CAS  Google Scholar 

  34. Liu T, Guo J, Lu D, Xu Z, Fu Q, Zheng N, Xie Z, Wan X, Zhang X, Liu Y, Chen Y. ACS Nano, 2021, 15: 7811–7820

    Article  CAS  Google Scholar 

  35. Gao L, Zhang F, Chen X, Xiao C, Larson BW, Dunfield SP, Berry JJ, Zhu K. Angew Chem, 2019, 131: 11863–11867

    Article  Google Scholar 

  36. Chen Y, Sun Y, Peng J, Tang J, Zheng K, Liang Z. Adv Mater, 2018, 30: 1703487

    Article  Google Scholar 

  37. Zhang F, Lu H, Tong J, Berry JJ, Beard MC, Zhu K. Energy Environ Sci, 2020, 13: 1154–1186

    Article  CAS  Google Scholar 

  38. Bi E, Tang W, Chen H, Wang Y, Barbaud J, Wu T, Kong W, Tu P, Zhu H, Zeng X, He J, Kan S, Yang X, Grätzel M, Han L. Joule, 2019, 3: 2748–2760

    Article  CAS  Google Scholar 

  39. Yu D, Hu Y, Shi J, Tang H, Zhang W, Meng Q, Han H, Ning Z, Tian H. Sci China Chem, 2019, 62: 684–707

    Article  CAS  Google Scholar 

  40. Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Nat Energy, 2017, 2: 17135

    Article  CAS  Google Scholar 

  41. Yao K, Wang X, Xu Y, Li F. Nano Energy, 2015, 18: 165–175

    Article  CAS  Google Scholar 

  42. Yang B, Suo J, Di Giacomo F, Olthof S, Bogachuk D, Kim YJ, Sun X, Wagner L, Fu F, Zakeeruddin SM, Hinsch A, Grätzel M, Di Carlo A, Hagfeldt A. ACS Energy Lett, 2021, 6: 3916–3923

    Article  CAS  Google Scholar 

  43. Ma K, Atapattu HR, Zhao Q, Gao Y, Finkenauer BP, Wang K, Chen K, Park SM, Coffey AH, Zhu C, Huang L, Graham KR, Mei J, Dou L. Adv Mater, 2021, 33: 2100791

    Article  CAS  Google Scholar 

  44. Li Q, Shu Q, Wang Y, Zhou DY, Wang F, Yuan Q, Yi S, Wang H, Feng L. ACS Appl Energy Mater, 2021, 4: 10081–10090

    Article  CAS  Google Scholar 

  45. Zimmermann I, Aghazada S, Nazeeruddin MK. Angew Chem Int Ed, 2019, 58: 1072–1076

    Article  CAS  Google Scholar 

  46. Ouedraogo NAN, Yan H, Han CB, Zhang Y. Small, 2021, 17: 2004081

    Article  CAS  Google Scholar 

  47. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D. J Phys-Condens Matter, 2002, 14: 2745–2779

    Article  CAS  Google Scholar 

  48. Halliday J, Artacho E. Phys Rev B, 2019, 100: 104112

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  50. Corsetti F, Fernández-Serra MV, Soler JM, Artacho E. J Phys-Condens Matter, 2013, 25: 435504

    Article  Google Scholar 

  51. Weller MT, Weber OJ, Frost JM, Walsh A. J Phys Chem Lett, 2015, 6: 3209–3212

    Article  CAS  Google Scholar 

  52. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM. J Phys-Condens Matter, 2009, 21: 395502

    Article  Google Scholar 

  53. Prandini G, Marrazzo A, Castelli IE, Mounet N, Marzari N. npj Comput Mater, 2018, 4: 72

    Article  Google Scholar 

  54. Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blügel S, Blum V, Caliste D, Castelli IE, Clark SJ, Dal Corso A, de Gironcoli S, Deutsch T, Dewhurst JK, Di Marco I, Draxl C, Dułak M, Eriksson O, Flores-Livas JA, Garrity KF, Genovese L, Giannozzi P, Giantomassi M, Goedecker S, Gonze X, Grånäs O, Gross EKU, Gulans A, Gygi F, Hamann DR, Hasnip PJ, Holzwarth NAW, Iuşan D, Jochym DB, Jollet F, Jones D, Kresse G, Koepernik K, Küçükbenli E, Kvashnin YO, Locht ILM, Lubeck S, Marsman M, Marzari N, Nitzsche U, Nordström L, Ozaki T, Paulatto L, Pickard CJ, Poelmans W, Probert MIJ, Refson K, Richter M, Rignanese GM, Saha S, Scheffler M, Schlipf M, Schwarz K, Sharma S, Tavazza F, Thunström P, Tkatchenko A, Torrent M, Vanderbilt D, van Setten MJ, Van Speybroeck V, Wills JM, Yates JR, Zhang GX, Cottenier S. Science, 2016, 351: aad3000

    Article  Google Scholar 

  55. Liang A, Ma K, Gao Y, Dou L. Small Struct, 2022, 3: 2100173

    Article  CAS  Google Scholar 

  56. Liang A, Wang K, Gao Y, Finkenauer BP, Zhu C, Jin L, Huang L, Dou L. Angew Chem Int Ed, 2021, 60: 8337–8343

    Article  CAS  Google Scholar 

  57. Zhan Y, Yang F, Chen W, Chen H, Shen Y, Li Y, Li Y. Adv Mater, 2021, 33: 2105170

    Article  CAS  Google Scholar 

  58. Sutanto AA, Caprioglio P, Drigo N, Hofstetter YJ, Garcia-Benito I, Queloz VIE, Neher D, Nazeeruddin MK, Stolterfoht M, Vaynzof Y, Grancini G. Chem, 2021, 7: 1903–1916

    Article  CAS  Google Scholar 

  59. Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L. Nat Energy, 2016, 1: 16148

    Article  CAS  Google Scholar 

  60. Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Grätzel M. Energy Environ Sci, 2016, 9: 1989–1997

    Article  CAS  Google Scholar 

  61. Zheng J, Chen J, Ouyang D, Huang Z, He X, Kim J, Choy WCH. ACS Appl Mater Interfaces, 2020, 12: 57165–57173

    Article  CAS  Google Scholar 

  62. Sonmezoglu S, Akin S. Nano Energy, 2020, 76: 105127

    Article  CAS  Google Scholar 

  63. Jeong S, Seo S, Yang H, Park H, Shin S, Ahn H, Lee D, Park JH, Park N, Shin H. Adv Energy Mater, 2021, 11: 2102236

    Article  CAS  Google Scholar 

  64. Gharibzadeh S, Abdollahi Nejand B, Jakoby M, Abzieher T, Hauschild D, Moghadamzadeh S, Schwenzer JA, Brenner P, Schmager R, Haghighirad AA, Weinhardt L, Lemmer U, Richards BS, Howard IA, Paetzold UW. Adv Energy Mater, 2019, 9: 1803699

    Article  Google Scholar 

  65. Pistor P, Greiner D, Kaufmann CA, Brunken S, Gorgoi M, Steigert A, Calvet W, Lauermann I, Klenk R, Unold T, Lux-Steiner MC. Appl Phys Lett, 2014, 105: 063901

    Article  Google Scholar 

  66. Zheng X, Deng Y, Chen B, Wei H, Xiao X, Fang Y, Lin Y, Yu Z, Liu Y, Wang Q, Huang J. Adv Mater, 2018, 30: 1803428

    Article  Google Scholar 

  67. Wu X, Trinh MT, Niesner D, Zhu H, Norman Z, Owen JS, Yaffe O, Kudisch BJ, Zhu XY. J Am Chem Soc, 2015, 137: 2089–2096

    Article  CAS  Google Scholar 

  68. Han Q, Bae SH, Sun P, Hsieh YT, Yang YM, Rim YS, Zhao H, Chen Q, Shi W, Li G, Yang Y. Adv Mater, 2016, 28: 2253–2258

    Article  CAS  Google Scholar 

  69. Si H, Liao Q, Kang Z, Ou Y, Meng JJ, Liu Y, Zhang Z, Zhang Y. Adv Funct Mater, 2017, 27: 1701804

    Article  Google Scholar 

  70. Liu Y, Akin S, Pan L, Uchida R, Arora N, Milić JV, Hinderhofer A, Schreiber F, Uhl AR, Zakeeruddin SM, Hagfeldt A, Dar MI, Grätzel M. Sci Adv, 2019, 5: eaaw2543

    Article  CAS  Google Scholar 

  71. Oner SM, Sezen E, Yordanli MS, Karakoc E, Deger C, Yavuz I. J Phys Chem Lett, 2022, 13: 324–330

    Article  CAS  Google Scholar 

  72. Su TS, Eickemeyer FT, Hope MA, Jahanbakhshi F, Mladenović M, Li J, Zhou Z, Mishra A, Yum JH, Ren D, Krishna A, Ouellette O, Wei TC, Zhou H, Huang HH, Mensi MD, Sivula K, Zakeeruddin SM, Milić JV, Hagfeldt A, Rothlisberger U, Emsley L, Zhang H, Grätzel M. J Am Chem Soc, 2020, 142: 19980–19991

    Article  CAS  Google Scholar 

  73. Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y. Adv Mater, 2018, 30: 1805323

    Article  Google Scholar 

  74. Fan J, Ma Y, Zhang C, Liu C, Li W, Schropp REI, Mai Y. Adv Energy Mater, 2018, 8: 1703421

    Article  Google Scholar 

  75. Grancini G, Nazeeruddin MK. Nat Rev Mater, 2019, 4: 4–22

    Article  CAS  Google Scholar 

  76. Zhang F, Lu H, Tong J, Berry JJ, Beard MC, Zhu K. Energy Environ Sci, 2020, 13: 1154–1186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51763013), the Natural Science Foundation of Jiangxi Province (20224ACB213002) and the Foundation of Jiangxi Educational Committee (GJJ200301). The authors thank Prof. Qingyan Liu for help with crystal structures analysis and Wanzhu Cai for help with SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aihui Liang, Qifan Xue or Yiwang Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1436_MOESM1_ESM.doc

Highly Efficient Perovskite Solar Cells by Building 2D/3D Perovskite Heterojuction in Situ for Interfacial Passivation and Energy Level Adjustment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Yuan, Z., Yang, J. et al. Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment. Sci. China Chem. 66, 449–458 (2023). https://doi.org/10.1007/s11426-022-1436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1436-7

Keywords

Navigation