Skip to main content
Log in

Building a PEG-C@MoSe2@CNT heterostructure via in-situ selenidation as highly reversible anodes for Na+ batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Herein, we describe a simple and efficient method to build C@MoSe2@CNT composites that exhibit good electrochemical performance as anode materials for sodium-ion batteries. The protocol uses commercially available and cheap carbon nanotubes (CNT) as the conductive network. Molybdenum selenide (MoSe2), in-situ-synthesized from Mo-ethylene glycol (poly(ethylene glycol) (PEG, Mn ≈ 200)) complexes, grows along the CNT with a discontinuous morphology, which creates multiple channels for the insertion of Na+. Meanwhile, PEG-C provides a thin carbon coating layer to increase stability. For PEG-200-2-C/MoSe2/CNT at room temperature, the storage at 2 A g−1 is 426 mA h g−1 after 500 cycles and 212 mA h g−1 after 3,000 cycles. Compared with pure MoSe2, density functional theory calculations indicate that the Na+ diffusion barrier in the MoSe2 of C@MoSe2@CNT effectively decreases from 0.91 to 0.72 eV, hence promoting the reversibility of the Na+ storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Nature, 2018, 559: 556–563

    Article  CAS  Google Scholar 

  2. House RA, Maitra U, Pérez-Osorio MA, Lozano JG, Jin L, Somerville JW, Duda LC, Nag A, Walters A, Zhou KJ, Roberts MR, Bruce PG. Nature, 2020, 577: 502–508

    Article  CAS  Google Scholar 

  3. Ito S, Sugimasa M, Toshimitsu Y, Orita A, Kitagawa M, Sakai M. Electrochim Acta, 2019, 319: 164–174

    Article  CAS  Google Scholar 

  4. Vaalma C, Buchholz D, Weil M, Passerini S. Nat Rev Mater, 2018, 3: 1

    Article  Google Scholar 

  5. Liu Q, Hu Z, Li W, Zou C, Jin H, Wang S, Chou S, Dou SX. Energy Environ Sci, 2021, 14: 158–179

    Article  CAS  Google Scholar 

  6. Ali Z, Zhang T, Asif M, Zhao L, Yu Y, Hou Y. Mater Today, 2020, 35: 131–167

    Article  CAS  Google Scholar 

  7. Chen H, Wan S, Tian P, Liu Q. ACS Appl Energy Mater, 2021, 4: 12728–12737

    Article  CAS  Google Scholar 

  8. Zhang R, Qin Y, Liu P, Jia C, Tang Y, Wang H. ChemSusChem, 2020, 13: 1354–1365

    Article  CAS  Google Scholar 

  9. Zhang R, Li H, Sun D, Luan J, Huang X, Tang Y, Wang H. J Mater Sci, 2019, 54: 2472–2482

    Article  CAS  Google Scholar 

  10. Wang B, Gao X, Xu L, Zou K, Cai P, Deng X, Yang L, Hou H, Zou G, Ji X. Batteries Supercaps, 2021, 4: 538–553

    Article  CAS  Google Scholar 

  11. Hu HY, Xiao Y, Ling W, Wu YB, Wang P, Tan SJ, Xu YS, Guo YJ, Chen WP, Tang RR, Zeng XX, Yin YX, Wu XW. Energy Technol, 2021, 9: 2000730

    Article  CAS  Google Scholar 

  12. Jing WT, Yang CC, Jiang Q. J Mater Chem A, 2020, 8: 2913–2933

    Article  CAS  Google Scholar 

  13. Wu Y, Yao Y, Wang L, Yu Y. Chem Res Chin Univ, 2021, 37: 200–209

    Article  Google Scholar 

  14. Li P, Guo X, Wang S, Zang R, Li X, Man Z, Li P, Liu S, Wu Y, Wang G. J Mater Chem A, 2019, 7: 2553–2559

    Article  CAS  Google Scholar 

  15. Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Chem Soc Rev, 2020, 49: 3565–3604

    Article  CAS  Google Scholar 

  16. Wang YH, Li XT, Wang WP, Yan HJ, Xin S, Guo YG. Sci China Chem, 2020, 63: 1402–1415

    Article  CAS  Google Scholar 

  17. Ye B, Xu L, Wu W, Ye Y, Yang Z, Ai J, Qiu Y, Gong Z, Zhou Y, Huang Q, Shen Z, Li F, Guo T, Xu S. J Mater Chem C, 2022, 10: 3329–3342

    Article  CAS  Google Scholar 

  18. Xu J, Liu Q, Dong Z, Wang L, Xie X, Jiang Y, Wei Z, Gao Y, Zhang Y, Huang K. ACS Appl Mater Interfaces, 2021, 13: 54974–54980

    Article  CAS  Google Scholar 

  19. Seon YH, Chan Kang Y, Cho JS. Chem Eng J, 2021, 425: 129051

    Article  Google Scholar 

  20. Ge P, Zhang L, Yang Y, Sun W, Hu Y, Ji X. Adv Mater Interfaces, 2020, 7: 1901651

    Article  CAS  Google Scholar 

  21. Wang W, Jiang B, Qian C, Lv F, Feng J, Zhou J, Wang K, Yang C, Yang Y, Guo S. Adv Mater, 2018, 30: 1801812

    Article  Google Scholar 

  22. Wang Y, Yang Y, Zhang D, Wang Y, Luo X, Liu X, Kim JK, Luo Y. Nanoscale Horiz, 2020, 5: 1127–1135

    Article  Google Scholar 

  23. Liu Z, Zhang Y, Zhao H, Li N, Du Y. Sci China Mater, 2017, 60: 167–177

    Article  Google Scholar 

  24. Yousaf M, Wang Y, Chen Y, Wang Z, Firdous A, Ali Z, Mahmood N, Zou R, Guo S, Han RPS. Adv Energy Mater, 2019, 9: 1900567

    Article  Google Scholar 

  25. Xie D, Tang W, Wang Y, Xia X, Zhong Y, Zhou D, Wang D, Wang X, Tu J. Nano Res, 2016, 9: 1618–1629

    Article  CAS  Google Scholar 

  26. Su Q, Cao X, Yu T, Kong X, Wang Y, Chen J, Lin J, Xie X, Liang S, Pan A. J Mater Chem A, 2019, 7: 22871–22878

    Article  CAS  Google Scholar 

  27. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Science, 2013, 339: 535–539

    Article  CAS  Google Scholar 

  28. Rathinavel S, Priyadharshini K, Panda D. Mater Sci Eng-B, 2021, 268: 115095

    Article  CAS  Google Scholar 

  29. Chen W, Duan L, Zhu D. Environ Sci Technol, 2007, 41: 8295–8300

    Article  CAS  Google Scholar 

  30. Zhang S, Shao T, Kose HS, Karanfil T. Environ Sci Technol, 2010, 44: 6377–6383

    Article  CAS  Google Scholar 

  31. Rocha JDR, Rogers RE, Dichiara AB, Capasse RC. Environ Sci-Water Res Technol, 2017, 3: 203–212

    Article  CAS  Google Scholar 

  32. Díaz-Flores PE, Arcibar-Orozco JA, Perez-Aguilar NV, Rangel-Mendez JR, Ovando Medina VM, Alcalá-Jáuegui JA. Water Air Soil Pollut, 2017, 228: 133

    Article  Google Scholar 

  33. Zheng S, Li Q, Xue H, Pang H, Xu Q. Natl Sci Rev, 2020, 7: 305–314

    Article  CAS  Google Scholar 

  34. Kang C, Lee Y, Kim I, Hyun S, Lee TH, Yun S, Yoon WS, Moon Y, Lee J, Kim S, Lee HJ. Materials, 2019, 12: 1324

    Article  CAS  Google Scholar 

  35. Tian W, Hu H, Wang Y, Li P, Liu J, Liu J, Wang X, Xu X, Li Z, Zhao Q, Ning H, Wu W, Wu M. ACS Nano, 2018, 12: 1990–2000

    Article  CAS  Google Scholar 

  36. Yang Z, Chen X, Pu Y, Zhou L, Chen C, Li W, Xu L, Yi B, Wang Y. Polym Adv Technol, 2007, 18: 458–462

    Article  CAS  Google Scholar 

  37. Wang L, Zhang Q, Zhu J, Duan X, Xu Z, Liu Y, Yang H, Lu B. Energy Storage Mater, 2019, 16: 37–45

    Article  Google Scholar 

  38. Zhang Z, Yang X, Fu Y, Du K. J Power Sources, 2015, 296: 2–9

    Article  CAS  Google Scholar 

  39. Park GD, Kim JH, Park SK, Kang YC. ACS Appl Mater Interfaces, 2017, 9: 10673–10683

    Article  CAS  Google Scholar 

  40. Su C, Ru Q, Gao Y, Shi Z, Zheng M, Chen F, Chi-Chung Ling F, Wei L. J Alloys Compd, 2021, 850: 156770

    Article  CAS  Google Scholar 

  41. Wang J, Polleux J, Lim J, Dunn B. J Phys Chem C, 2007, 111: 14925–14931

    Article  CAS  Google Scholar 

  42. Xu Y, Liu X, Su H, Jiang S, Zhang J, Li D. Energy Environ Mater, 2022, 5: 627–636

    Article  CAS  Google Scholar 

  43. Zheng F, Zhong W, Deng Q, Pan Q, Ou X, Liu Y, Xiong X, Yang C, Chen Y, Liu M. Chem Eng J, 2019, 357: 226–236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21725602, 21878071, 21971060). R. Qiu thanks Prof. Nobuaki Kambe of Osaka University, Prof. Ming Zhang and Prof. Hongwen Huang of Hunan University and Prof. Wai-Yeung Wong of Hong Kong Polytechnic University for their helpful discussion. C.T. Au thanks HNU for an adjunct professorship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Qiang Yu, Chak-Tong Au, Shuang-Feng Yin or Renhua Qiu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, F., Chen, Y. et al. Building a PEG-C@MoSe2@CNT heterostructure via in-situ selenidation as highly reversible anodes for Na+ batteries. Sci. China Chem. 66, 475–491 (2023). https://doi.org/10.1007/s11426-022-1416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1416-2

Keywords

Navigation