Skip to main content
Log in

Covalent stabilization of DNA nanostructures on cell membranes for efficient surface receptor-mediated labeling and function regulations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

One major challenge of using DNA nanostructures for cellular and in vivo applications is their insufficiently structural integrity that stems from the non-covalent base pairing and stacking in complex cellular and physiological environment. The establishment of covalent bonds in DNA nanostructures can link individual strands more stably and therefore should improve the performance of DNA nanostructures in different scenarios where structural integrity is required. Here, we developed a convenient and effective method for constructing covalently stabilized DNA nanostructures by chemically inserting photo-cross-linker (CNVK) in DNA sequences. These covalently linked DNA nanostructures were found to be more resistant to external interference, such as low cation concentrations and unspecific displacement on cell membranes. We also demonstrated that our strategy could improve the efficiency of cell surface receptor-mediated labeling and function regulations in living cells, which sheds light on broadening the biomedical applications of DNA nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watson JD, Crick FHC. Nature, 1953, 171: 737–738

    Article  CAS  PubMed  Google Scholar 

  2. Seeman NC. Nature, 2003, 421: 427–431

    Article  PubMed  Google Scholar 

  3. Rothemund PWK. Nature, 2006, 440: 297–302

    Article  CAS  PubMed  Google Scholar 

  4. Shao Y, Jia H, Cao T, Liu D. Acc Chem Res, 2017, 50: 659–668

    Article  CAS  PubMed  Google Scholar 

  5. Wilner OI, Willner I. Chem Rev, 2012, 112: 2528–2556

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Ma R, Zhao J, Zhao Y, Li L. Sci China Chem, 2020, 63: 1490–1497

    Article  CAS  Google Scholar 

  7. Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Chem Soc Rev, 2016, 45: 2583–2602

    Article  CAS  PubMed  Google Scholar 

  8. Hu Q, Li H, Wang L, Gu H, Fan C. Chem Rev, 2019, 119: 6459–6506

    Article  CAS  PubMed  Google Scholar 

  9. Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, Liu J, Shang Y, Zhao S, Wu T, Zhang Y, Nie G, Ding B. Nat Mater, 2021, 20: 421–430

    Article  CAS  PubMed  Google Scholar 

  10. Miao Y, Gao Q, Mao M, Zhang C, Yang L, Yang Y, Han D. Angew Chem Int Ed, 2021, 60: 11267–11271

    Article  CAS  Google Scholar 

  11. Zhou Y, Zhuo Y, Peng R, Zhang Y, Du Y, Zhang Q, Sun Y, Qiu L. Sci China Chem, 2021, 64: 1817–1825

    Article  CAS  Google Scholar 

  12. Jahnen-Dechent W, Ketteler M. Clin Kidney J, 2012, 5: i3–i14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Los DA, Murata N. Biochim Biophys Acta, 2004, 1666: 142–157

    Article  CAS  PubMed  Google Scholar 

  14. Ge Z, Liu J, Guo L, Yao G, Li Q, Wang L, Li J, Fan C. J Am Chem Soc, 2020, 142: 8800–8808

    Article  PubMed  Google Scholar 

  15. Wang L, Liang H, Sun J, Liu Y, Li J, Li J, Li J, Yang H. J Am Chem Soc, 2019, 141: 12673–12681

    Article  CAS  PubMed  Google Scholar 

  16. Ambrosetti E, Bernardinelli G, Hoffecker I, Hartmanis L, Kiriako G, de Marco A, Sandberg R, Högberg B, Teixeira AI. Nat Nanotechnol, 2021, 16: 85–95

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Wijesekara P, Kumar S, Wang W, Ren X, Taylor RE. Nanoscale, 2021, 13: 6819–6828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun L, Shen F, Xu J, Han X, Fan C, Liu Z. Angew Chem Int Ed, 2020, 59: 14842–14853

    Article  CAS  Google Scholar 

  19. Chu TC, Shieh F, Lavery LA, Levy M, Richards-Kortum R, Korgel BA, Ellington AD. Biosens Bioelectron, 2006, 21: 1859–1866

    Article  CAS  PubMed  Google Scholar 

  20. Terazono H, Anzai Y, Soloviev M, Yasuda K. J Nanobiotechnol, 2010, 8: 8

    Article  Google Scholar 

  21. Olszewska A, Pohl R, Brázdová M, Fojta M, Hocek M. Bioconjug Chem, 2016, 27: 2089–2094

    Article  CAS  PubMed  Google Scholar 

  22. Ivancová I, Pohl R, Hubálek M, Hocek M. Angew Chem Int Ed, 2019, 58: 13345–13348

    Article  Google Scholar 

  23. Sun J, Tang X. Sci Rep, 2015, 5: 10473

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hutchinson MA, Deeyaa BD, Byrne SR, Williams SJ, Rokita SE. Bioconjug Chem, 2020, 31: 1486–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerling T, Kube M, Kick B, Dietz H. Sci Adv, 2018, 4: eaau1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujimoto K, Yamada A, Yoshimura Y, Tsukaguchi T, Sakamoto T. J Am Chem Soc, 2013, 135: 16161–16167

    Article  CAS  PubMed  Google Scholar 

  27. Fujimoto K, Yoshinaga H, Yoshio Y, Sakamoto T. Org Biomol Chem, 2013, 11: 5065–5068

    Article  CAS  PubMed  Google Scholar 

  28. Yoshimura Y, Fujimoto K. Org Lett, 2008, 10: 3227–3230

    Article  CAS  PubMed  Google Scholar 

  29. Chang X, Zhang C, Lv C, Sun Y, Zhang M, Zhao Y, Yang L, Han D, Tan W. J Am Chem Soc, 2019, 141: 12738–12743

    Article  CAS  PubMed  Google Scholar 

  30. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W. Proc Natl Acad Sci USA, 2006, 103: 11838–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tuerk C, Gold L. Science, 1990, 249: 505–510

    Article  CAS  PubMed  Google Scholar 

  32. Gao Q, Zhao Y, Xu K, Zhang C, Ma Q, Qi L, Chao D, Zheng T, Yang L, Miao Y, Han D. Angew Chem Int Ed, 2020, 59: 23564–23568

    Article  CAS  Google Scholar 

  33. Hunter T. Cell, 2000, 100: 113–127

    Article  CAS  PubMed  Google Scholar 

  34. Schlessinger J. Cell, 2000, 103: 211–225

    Article  CAS  PubMed  Google Scholar 

  35. Organ SL, Tsao MS. Ther Adv Med Oncol, 2011, 3: S7–S19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA0909400), the National Natural Science Foundation of China (21974087, 81974315), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20181709), Shanghai Rising-Star Program (20QA1405800), and the General Projects of China Postdoctoral Fund (2021M692104). Innovative Research Team of High-Level Local Universities in Shanghai, faculty start-up funding support from the Institute of Molecular Medicine of Shanghai Jiao Tong University, and Recruitment Program of Global Youth Experts of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhen Du or Da Han.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2022_1413_MOESM1_ESM.docx

Covalent stabilization of DNA nanostructures on cell membranes for efficient surface receptor-mediated labeling and function regulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, D., Xu, X., Miao, Y. et al. Covalent stabilization of DNA nanostructures on cell membranes for efficient surface receptor-mediated labeling and function regulations. Sci. China Chem. 65, 2327–2334 (2022). https://doi.org/10.1007/s11426-022-1413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1413-5

Keywords

Navigation