Skip to main content
Log in

Promoting the electrochemical hydrogenation of furfural by synergistic Cu0−Cu+ active sites

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical hydrogenation (ECH) of furfural, which uses the proton from water and avoids the usage of gaseous hydrogen and high pressure, is an efficient way to utilize biomass energy. Cu-based catalysts are promising catalysts for the ECH of furfural. However, their active sites and reaction mechanism have not been fully understood yet. This work unveils the active oxidation state of Cu-based electrocatalysts for the ECH of furfural. The co-existence of Cu+ and Cu0 on the CuO surface under the working potential is confirmed by a series of in situ characterizations. The poisoning experiment shows that the performance decreased heavily after the Cu+ was complexed with SCN, indicating the decisive role of Cu+. Finally, the density functional theory (DFT) calculation suggests that the Cu0−Cu+ synergistic effect is beneficial to both kinetics and thermodynamics: Cu+ accelerates the second step hydrogenation process of furfural, and Cu0 reduces the energy barrier for the desorption of furfuryl alcohol. This work demonstrates the synergistic effect of Cu0 and Cu+ states for the electrochemical hydrogenation of furfural and provides a deeper understanding of the furfural hydrogenation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhade SA, Singh N, Gutiérrez OY, Lopez-Ruiz J, Wang H, Holladay JD, Liu Y, Karkamkar A, Weber RS, Padmaperuma AB, Lee MS, Whyatt GA, Elliott M, Holladay JE, Male JL, Lercher JA, Rousseau R, Glezakou VA. Chem Rev, 2020, 120: 11370–11419

    Article  CAS  Google Scholar 

  2. Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. Chem Rev, 2018, 118: 11023–11117

    Article  CAS  Google Scholar 

  3. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M. Energy Environ Sci, 2016, 9: 1144–1189

    Article  CAS  Google Scholar 

  4. May AS, Biddinger EJ. ACS Catal, 2020, 10: 3212–3221

    Article  CAS  Google Scholar 

  5. Zhou L, Zhu X, Su H, Lin H, Lyu Y, Zhao X, Chen C, Zhang N, Xie C, Li Y, Lu Y, Zheng J, Johannessen B, Jiang SP, Liu Q, Li Y, Zou Y, Wang S. Sci China Chem, 2021, 64: 1586–1595

    Article  CAS  Google Scholar 

  6. Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Chem Soc Rev, 2020, 49: 4273–4306

    Article  CAS  Google Scholar 

  7. Lucas FWS, Grim RG, Tacey SA, Downes CA, Hasse J, Roman AM, Farberow CA, Schaidle JA, Holewinski A. ACS Energy Lett, 2021, 6: 1205–1270

    Article  CAS  Google Scholar 

  8. Zhang X, Han M, Liu G, Wang G, Zhang Y, Zhang H, Zhao H. Appl Catal B-Environ, 2019, 244: 899–908

    Article  CAS  Google Scholar 

  9. Carroll KJ, Burger T, Langenegger L, Chavez S, Hunt ST, Román-Leshkov Y, Brushett FR. ChemSusChem, 2016, 9: 1904–1910

    Article  CAS  Google Scholar 

  10. Liu L, Liu H, Huang W, He Y, Zhang W, Wang C, Lin H. J Electroanal Chem, 2017, 804: 248–253

    Article  CAS  Google Scholar 

  11. Nilges P, Schröder U. Energy Environ Sci, 2013, 6: 2925–2931

    Article  CAS  Google Scholar 

  12. Chadderdon XH, Chadderdon DJ, Matthiesen JE, Qiu Y, Carraher JM, Tessonnier JP, Li W. J Am Chem Soc, 2017, 139: 14120–14128

    Article  CAS  Google Scholar 

  13. Zhou P, Chen Y, Luan P, Zhang X, Yuan Z, Guo SX, Gu Q, Johannessen B, Mollah M, Chaffee AL, Turner DR, Zhang J. Green Chem, 2021, 23: 3028–3038

    Article  CAS  Google Scholar 

  14. Solanki BS, Rode CV. Green Chem, 2019, 21: 6390–6406

    Article  CAS  Google Scholar 

  15. Geng W, Li W, Liu L, Liu J, Liu L, Kong X. Fuel, 2020, 259: 116267

    Article  CAS  Google Scholar 

  16. Lee J, Seo JH, Nguyen-Huy C, Yang E, Lee JG, Lee H, Jang EJ, Kwak JH, Lee JH, Lee H, An K. Appl Catal B-Environ, 2021, 282: 119576

    Article  CAS  Google Scholar 

  17. Wang J, Tan HY, Zhu Y, Chu H, Chen HM. Angew Chem Int Ed, 2021, 60: 17254–17267

    Article  CAS  Google Scholar 

  18. Rajendran K, Pandurangan N, Vinod CP, Khan TS, Gupta S, Haider MA, Jagadeesan D. Appl Catal B-Environ, 2021, 297: 120417

    Article  Google Scholar 

  19. Min S, Yang X, Lu AY, Tseng CC, Hedhili MN, Li LJ, Huang KW. Nano Energy, 2016, 27: 121–129

    Article  CAS  Google Scholar 

  20. Wei X, Li Y, Chen L, Shi J. Angew Chem Int Ed, 2021, 60: 3148–3155

    Article  CAS  Google Scholar 

  21. Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Angew Chem Int Ed, 2020, 59: 5350–5354

    Article  CAS  Google Scholar 

  22. Chen X, Liu G, Zheng W, Feng W, Cao W, Hu W, Hu PA. Adv Funct Mater, 2016, 26: 8537–8544

    Article  CAS  Google Scholar 

  23. Zhou XZ, Deng CP, Su YC. J Alloys Compd, 2010, 491: 92–97

    Article  CAS  Google Scholar 

  24. Abbaspour A, Khajehzadeh A, Ghaffarinejad A. J Electroanal Chem, 2009, 631: 52–57

    Article  CAS  Google Scholar 

  25. Anantharaj S, Karthik PE, Noda S. Angew Chem Int Ed, 2021, 60: 23051–23067

    Article  CAS  Google Scholar 

  26. Zhou Y, Che F, Liu M, Zou C, Liang Z, De Luna P, Yuan H, Li J, Wang Z, Xie H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham TK, Bals S, Hofkens J, Sinton D, Chen G, Sargent EH. Nat Chem, 2018, 10: 974–980

    Article  CAS  Google Scholar 

  27. De Luna P, Quintero-Bermudez R, Dinh CT, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH. Nat Catal, 2018, 1: 103–110

    Article  CAS  Google Scholar 

  28. Weng Z, Wu Y, Wang M, Jiang J, Yang K, Huo S, Wang XF, Ma Q, Brudvig GW, Batista VS, Liang Y, Feng Z, Wang H. Nat Commun, 2018, 9: 415

    Article  Google Scholar 

  29. Jung H, Lee SY, Lee CW, Cho MK, Won DH, Kim C, Oh HS, Min BK, Hwang YJ. J Am Chem Soc, 2019, 141: 4624–4633

    Article  CAS  Google Scholar 

  30. Arán-Ais RM, Scholten F, Kunze S, Rizo R, Roldan Cuenya B. Nat Energy, 2020, 5: 317–325

    Article  Google Scholar 

  31. Penneman RA, Jones LH. J Chem Phys, 1956, 24: 293–296

    Article  CAS  Google Scholar 

  32. Hage W, Hallbrucker A, Mayer E. J Phys Chem, 1992, 96: 6488–6493

    Article  CAS  Google Scholar 

  33. Li X, Zhou D, Hao H, Chen H, Weng Y, Bian H. J Phys Chem Lett, 2020, 11: 548–555

    Article  Google Scholar 

  34. Aristizábal A, Contreras S, Barrabés N, Llorca J, Tichit D, Medina F. Appl Catal B-Environ, 2011, 110: 58–70

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2020YFA0710000), the National Natural Science Foundation of China (22122901, 21902047, 21825201, U19A2017), the Provincial Natural Science Foundation of Hunan (2020JJ5045, 2021JJ20024, 2021RC3054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chung-Li Dong or Yuqin Zou.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z., Li, Y., Wu, J. et al. Promoting the electrochemical hydrogenation of furfural by synergistic Cu0−Cu+ active sites. Sci. China Chem. 65, 2588–2595 (2022). https://doi.org/10.1007/s11426-022-1407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1407-0

Keywords

Navigation