Skip to main content
Log in

Atropoenantioselective synthesis of heterobiaryl N-oxides via dynamic kinetic resolution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A highly efficient enantioselective construction of heterobiaryl N-oxides was developed. A series of axially chiral heterobiaryl N-oxides were generated via the cascade reaction of aminobenzamides with heterobiaryl aldehydes in the presence of chiral phosphoric acids. A number of atropisomers were afforded in moderate to good yields with excellent enantioselectivities and diastereoselectivities. Preliminary results demonstrate that the heterobiaryl N-oxides can be utilized as efficient chiral ligands in asymmetric catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem Rev, 2011, 111: 563–639

    CAS  Google Scholar 

  2. Kozlowski MC, Morgan BJ, Linton EC. Chem Soc Rev, 2009, 38: 3193–3207

    CAS  Google Scholar 

  3. Smyth JE, Butler NM, Keller PA. Nat Prod Rep, 2015, 32: 1562–1583

    CAS  Google Scholar 

  4. Zask A, Murphy J, Ellestad GA. Chirality, 2013, 25: 265–274

    CAS  Google Scholar 

  5. Pu L. Acc Chem Res, 2012, 45: 150–163

    CAS  Google Scholar 

  6. Xue M, Li B, Qiu S, Chen B. Mater Today, 2016, 19: 503–515

    CAS  Google Scholar 

  7. Collins BSL, Kistemaker JCM, Otten E, Feringa BL. Nat Chem, 2016, 8: 860–866

    CAS  Google Scholar 

  8. Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Chem Rev, 2015, 115: 10081–10206

    CAS  Google Scholar 

  9. Qi LW, Mao JH, Zhang J, Tan B. Nat Chem, 2018, 10: 58–64

    CAS  Google Scholar 

  10. Jiang PY, Fan KF, Li S, Xiang SH, Tan B. Nat Commun, 2021, 12: 2384

    CAS  Google Scholar 

  11. Zhang HH, Wang CS, Li C, Mei GJ, Li Y, Shi F. Angew Chem Int Ed, 2017, 56: 116–121

    CAS  Google Scholar 

  12. Howard RH, Alonso-Moreno C, Broomfield LM, Hughes DL, Wright JA, Bochmann M. Dalton Trans, 2009, 8667

  13. Rokade BV, Guiry PJ. J Org Chem, 2019, 84: 5763–5772

    CAS  Google Scholar 

  14. Rokade BV, Guiry PJ. ACS Catal, 2017, 7: 2334–2338

    CAS  Google Scholar 

  15. Akiyama T. Chem Rev, 2007, 107: 5744–5758

    CAS  Google Scholar 

  16. Li Y, Kwong F, Yu W, Chan A. Coord Chem Rev, 2007, 251: 2119–2144

    CAS  Google Scholar 

  17. Chen Y, Yekta S, Yudin AK. Chem Rev, 2003, 103: 3155–3212

    CAS  Google Scholar 

  18. Cheng D, Shao Y. Adv Synth Catal, 2020, 362: 3081–3099

    CAS  Google Scholar 

  19. Pais VF, Ramírez-López P, Romero-Arenas A, Collado D, Nájera F, Pérez-Inestrosa E, Fernández R, Lassaletta JM, Ros A, Pischel U. J Org Chem, 2016, 81: 9605–9611

    CAS  Google Scholar 

  20. Malkov AV, Dufková L, Farrugia L, Kocovský P. Angew Chem Int Ed, 2003, 42: 3674–3677

    CAS  Google Scholar 

  21. Malkov AV, Ramírez-López P, Biedermannová(née Bendová) L, Rulíšek L, Dufková L, Kotora M, Zhu F, Kočovský P. J Am Chem Soc, 2008, 130: 5341–5348

    CAS  Google Scholar 

  22. Malkov AV, Kočovský P. Eur J Org Chem, 2007, 2007(1): 29–36

    Google Scholar 

  23. Nakajima M, Saito M, Shiro M, Hashimoto S. J Am Chem Soc, 1998, 120: 6419–6420

    CAS  Google Scholar 

  24. Shimada T, Kina A, Ikeda S, Hayashi T. Org Lett, 2002, 4: 2799–2801

    CAS  Google Scholar 

  25. Shimada T, Kina A, Hayashi T. J Org Chem, 2003, 68: 6329–6337

    CAS  Google Scholar 

  26. Murray JI, Flodén NJ, Bauer A, Fessner ND, Dunklemann DL, Bob-Egbe O, Rzepa HS, Bürgi T, Richardson J, Spivey AC. Angew Chem Int Ed, 2017, 56: 5760–5764

    CAS  Google Scholar 

  27. Xie MS, Shan M, Li N, Chen YG, Wang XB, Cheng X, Tian Y, Wu XX, Deng Y, Qu GR, Guo HM. ACS Catal, 2022, 12: 877–891

    CAS  Google Scholar 

  28. Xie MS, Huang B, Li N, Tian Y, Wu XX, Deng Y, Qu GR, Guo HM. J Am Chem Soc, 2020, 142: 19226–19238

    CAS  Google Scholar 

  29. Xie MS, Zhang YF, Shan M, Wu XX, Qu GR, Guo HM. Angew Chem Int Ed, 2019, 58: 2839–2843

    CAS  Google Scholar 

  30. Derdau V, Laschat S, Hupe E, König WA, Dix I, Jones PG. Eur J Inorg Chem, 1999, 1999: 1001–1007

    Google Scholar 

  31. Karayannis N, Pytlewski L L, Mikulski CM. Coord Chem Rev, 1973, 11: 93–159

    CAS  Google Scholar 

  32. Nakajima M, Sasaki Y, Shiro M, Hashimoto S. Tetrahedron-Asymmetry, 1997, 8: 341–344

    CAS  Google Scholar 

  33. Nakajima M, Sasaki Y, Iwamoto H, Hashimoto S. Tetrahedron Lett, 1998, 39: 87–88

    CAS  Google Scholar 

  34. Staniland S, Adams RW, McDouall JJW, Maffucci I, Contini A, Grainger DM, Turner NJ, Clayden J. Angew Chem Int Ed, 2016, 55: 10755–10759

    CAS  Google Scholar 

  35. Zheng J, You SL. Angew Chem Int Ed, 2014, 53: 13244–13247

    CAS  Google Scholar 

  36. Ma C, Jiang F, Sheng FT, Jiao Y, Mei GJ, Shi F. Angew Chem Int Ed, 2019, 58: 3014–3020

    CAS  Google Scholar 

  37. Guo D, Zhang J, Zhang B, Wang J. Org Lett, 2018, 20: 6284–6288

    CAS  Google Scholar 

  38. Carmona JA, Rodríguez-Franco C, López-Serrano J, Ros A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. ACS Catal, 2021, 11: 4117–4124

    CAS  Google Scholar 

  39. Mori K, Itakura T, Akiyama T. Angew Chem Int Ed, 2016, 55: 11642–11646

    CAS  Google Scholar 

  40. Zhang J, Wang J. Angew Chem Int Ed, 2018, 57: 465–469

    CAS  Google Scholar 

  41. Hornillos V, Carmona JA, Ros A, Iglesias-Sigüenza J, López-Serrano J, Fernández R, Lassaletta JM. Angew Chem Int Ed, 2018, 57: 3777–3781

    CAS  Google Scholar 

  42. Hong X, Guo J, Liu J, Cao W, Wei C, Zhang Y, Zhang X, Fu Z. Sci China Chem, 2022, 65: 905–911

    CAS  Google Scholar 

  43. Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew Chem Int Ed, 2004, 43: 1566–1568

    CAS  Google Scholar 

  44. Uraguchi D, Terada M. J Am Chem Soc, 2004, 126: 5356–5357

    CAS  Google Scholar 

  45. Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev, 2014, 114: 9047–9153

    CAS  Google Scholar 

  46. Cheng X, Vellalath S, Goddard R, List B. J Am Chem Soc, 2008, 130: 15786–15787

    CAS  Google Scholar 

  47. Rueping M, Antonchick AP, Sugiono E, Grenader K. Angew Chem Int Ed, 2009, 48: 908–910

    CAS  Google Scholar 

  48. Huang D, Li X, Xu F, Li L, Lin X. ACS Catal, 2013, 3: 2244–2247

    CAS  Google Scholar 

  49. CCDC 2167850 (3al) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viahttps://www.ccdc.cam.ac.uk/data_request/cif

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871160, 21672121, 22071130) and the fellowship of Tsinghua-Peking Centre for Life Sciences (CLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Wang, J. Atropoenantioselective synthesis of heterobiaryl N-oxides via dynamic kinetic resolution. Sci. China Chem. 65, 2512–2516 (2022). https://doi.org/10.1007/s11426-022-1402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1402-9

Keywords

Navigation