Skip to main content
Log in

Ring-opening metathesis polymerization of cyclopropene derivatives towards polyolefin elastomer analogues

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Polyolefin elastomers (POEs) are important reprocessable industrial materials with high strain-recovery performance. Traditional POEs are prepared from transition-metal-catalyzed polymerization of ethylene and α-olefins, while because of the complicated coordination polymerization mechanism, defining the actual distribution and length of alkyl branches in POEs is extremely challenging. We herein propose an alternative approach of synthesizing POE analogues from ring-opening metathesis polymerization (ROMP) of highly strained 3,3-alkyl-substituted cyclopropenes (CPEs). The structures of monomers and the substituents of Ru-catalysts are investigated in detail to evaluate the homobenzyl-substituted CPE derivative as a new living ROMP monomer. After copolymerization with cyclooctene and backbone hydrogenation, POE analogues with well-defined alkyl branches are prepared. Since the ROMP reactions have little isomerization and can also give good control of molecular weight and copolymer composition, it is hypothesized that this synthetic approach provides a novel platform to assist understanding the influence of branches on the properties of POEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wang J, Chen S, Gao Y, Zhang Z. Chin J Org Chem, 2021, 41: 1888–1896

    Google Scholar 

  2. Liu K, Li T, Liu DY, Li W, Han J, Zhu C, Xie J. Sci China Chem, 2021, 64: 1958–1963

    Article  CAS  Google Scholar 

  3. Huo H, Gong Y. Org Biomol Chem, 2022, 20: 3847–3869

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Z, Gao Y, Chen S, Wang J. J Am Chem Soc, 2021, 143: 17806–17815

    Article  CAS  PubMed  Google Scholar 

  5. Walker R, Conrad RM, Grubbs RH. Macromolecules, 2009, 42: 599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Binder WH, Kurzhals S, Pulamagatta B, Decker U, Manohar Pawar G, Wang D, Kühnel C, Buchmeiser MR. Macromolecules, 2008, 41: 8405–8412

    Article  CAS  Google Scholar 

  7. Singh R, Schrock RR. Macromolecules, 2008, 41: 2990–2993

    Article  CAS  Google Scholar 

  8. Singh R, Czekelius C, Schrock RR. Macromolecules, 2006, 39: 1316–1317

    Article  CAS  Google Scholar 

  9. Elling BR, Su JK, Xia Y. Acc Chem Res, 2021, 54: 356–365

    Article  CAS  PubMed  Google Scholar 

  10. Su JK, Lee SY, Elling BR, Xia Y. Macromolecules, 2020, 53: 5833–5838

    Article  CAS  Google Scholar 

  11. Elling BR, Su JK, Feist JD, Xia Y. Chem, 2019, 5: 2691–2701

    Article  CAS  Google Scholar 

  12. Su JK, Jin Z, Zhang R, Lu G, Liu P, Xia Y. Angew Chem Int Ed, 2019, 58: 17771–17776

    Article  CAS  Google Scholar 

  13. Elling BR, Xia Y. ACS Macro Lett, 2018, 7: 656–661

    Article  CAS  PubMed  Google Scholar 

  14. Elling BR, Su JK, Xia Y. Chem Commun, 2016, 52: 9097–9100

    Article  CAS  Google Scholar 

  15. Elling BR, Xia Y. J Am Chem Soc, 2015, 137: 9922–9926

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Lu W, Goodwin A, Wang H, Yin P, Kang NG, Hong K, Mays JW. Prog Polym Sci, 2019, 95: 1–31

    Article  CAS  Google Scholar 

  17. Sadiku E. Polyolefin Fibres. Cambridge: Woodhead Publishing Limited, 2009. 81–132

    Google Scholar 

  18. Bonart R. Polymer, 1979, 20: 1389–1403

    Article  CAS  Google Scholar 

  19. Liu W, Ojo AT, Wang WJ, Fan H, Li BG, Zhu S. Polym Chem, 2015, 6: 3800–3806

    Article  CAS  Google Scholar 

  20. O’Connor KS, Watts A, Vaidya T, LaPointe AM, Hillmyer MA, Coates GW. Macromolecules, 2016, 49: 6743–6751

    Article  Google Scholar 

  21. Suo H, Oleynik IV, Huang C, Oleynik II, Solan GA, Ma Y, Liang T, Sun WH. Dalton Trans, 2017, 46: 15684–15697

    Article  CAS  PubMed  Google Scholar 

  22. Lian K, Zhu Y, Li W, Dai S, Chen C. Macromolecules, 2017, 50: 6074–6080

    Article  CAS  Google Scholar 

  23. He F, Wang D, Wu A, Jiang B, Zhang Z, Cheng Z, Fu Z, Zhang Q, Fan Z. Appl Organometal Chem, 2018, 32: e4566

    Article  Google Scholar 

  24. Fang J, Sui X, Li Y, Chen C. Polym Chem, 2018, 9: 4143–4149

    Article  CAS  Google Scholar 

  25. Vaidya T, Klimovica K, LaPointe AM, Keresztes I, Lobkovsky EB, Daugulis O, Coates GW. J Am Chem Soc, 2014, 136: 7213–7216

    Article  CAS  PubMed  Google Scholar 

  26. O’Connor KS, Lamb JR, Vaidya T, Keresztes I, Klimovica K, LaPointe AM, Daugulis O, Coates GW. Macromolecules, 2017, 50: 7010–7027

    Article  Google Scholar 

  27. Wang Y, Hillmyer MA. ACS Macro Lett, 2017, 6: 613–618

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi S, Pitet LM, Hillmyer MA. J Am Chem Soc, 2011, 133: 5794–5797

    Article  CAS  PubMed  Google Scholar 

  29. Nie S, Lu A, Kuker EL, Dong VM. J Am Chem Soc, 2021, 143: 6176–6184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quach PK, Hsu JH, Keresztes I, Fors BP, Lambert TH. Angew Chem Int Ed, 2022, 61: e202203344

    Article  CAS  Google Scholar 

  31. Lehman SE, Wagener KB. Organometallics, 2005, 24: 1477–1482

    Article  CAS  Google Scholar 

  32. Courchay FC, Sworen JC, Ghiviriga I, Abboud KA, Wagener KB. Organometallics, 2006, 25: 6074–6086

    Article  CAS  Google Scholar 

  33. Dumas A, Tarrieu R, Vives T, Roisnel T, Dorcet V, Baslé O, Mauduit M. ACS Catal, 2018, 8: 3257–3262

    Article  CAS  Google Scholar 

  34. Keitz BK, Endo K, Patel PR, Herbert MB, Grubbs RH. J Am Chem Soc, 2012, 134: 693–699

    Article  CAS  PubMed  Google Scholar 

  35. Keitz BK, Fedorov A, Grubbs RH. J Am Chem Soc, 2012, 134: 2040–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herbert MB, Lan Y, Keitz BK, Liu P, Endo K, Day MW, Houk KN, Grubbs RH. J Am Chem Soc, 2012, 134: 7861–7866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Endo K, Grubbs RH. J Am Chem Soc, 2011, 133: 8525–8527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strobl GR, Schneider M. J Polym Sci Polym Phys Ed, 1980, 18: 1343–1359

    Article  CAS  Google Scholar 

  39. Zhang K, Liu P, Wang WJ, Li BG, Liu W, Zhu S. Macromolecules, 2018, 51: 8790–8799

    Article  CAS  Google Scholar 

  40. Sun Y, Fu L, Wu Z, Men Y. Macromolecules, 2013, 46: 971–976

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001254). The authors also acknowledge Prof. Xiaoyu Yan (Renmin University of China) and Prof. Chenyang Liu (ICCAS) for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Wang or Wei You.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Wang, Y. & You, W. Ring-opening metathesis polymerization of cyclopropene derivatives towards polyolefin elastomer analogues. Sci. China Chem. 65, 2182–2187 (2022). https://doi.org/10.1007/s11426-022-1395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1395-0

Keywords

Navigation