Abstract
With the rapid increase in photoelectric conversion efficiency of organic photovoltaics (OPVs), prolonging the operational lifetime of devices becomes one of the critical prerequisites for commercial applications. Guided by the theoretical calculations of molecular stacking and miscibility, we proposed an effective approach to simultaneously improve device performance and thermal stability of high-efficiency OPVs by refining the aggregation of Y-series acceptors. The key to this approach is deliberately designing an asymmetric Y-series acceptor, named Y6-CNO, which acts as a third component regulator to finely tune the degree of acceptor aggregation and crystallization in the benchmark PM6:Y6-BO system. Strikingly, a champion photovoltaic efficiency of 18.0% was achieved by introducing 15 wt% Y6-CNO into the PM6:Y6-BO system, significantly higher than the control binary cell (16.7%). Moreover, annealing at 100 °C for over 1,200 h does not markedly affect the photovoltaic performance of the optimal ternary devices, maintaining above 95% of the initial performance and exhibiting an exceptionally high T80 lifetime of 9,000 h under continuous thermal annealing. By contrast, binary devices suffer from excessive crystallization of acceptors with long-term annealing. Additionally, mixing thermodynamics combined with morphological characterizations were employed to elucidate the microstructure-thermal stability relationships. The ternary OPVs consisting of symmetric and asymmetric homologous acceptors form better charge transport channels and can effectively suppress excessive aggregation of acceptors under long-term annealing. This work demonstrates the effectiveness of refining acceptor aggregation via molecular design for highly efficient and stable nonfullerene-based OPVs.

This is a preview of subscription content, access via your institution.
References
Li S, Li CZ, Shi M, Chen H. ACS Energy Lett, 2020, 5: 1554–1567
Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142
Wan X, Li C, Zhang M, Chen Y. Chem Soc Rev, 2020, 49: 2828–2842
Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem Soc Rev, 2019, 48: 1596–1625
Zhang ZG, Li Y. Angew Chem Int Ed, 2021, 60: 4422–4433
Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2021, 65: 224–268
Li Y, Xu G, Cui C, Li Y. Adv Energy Mater, 2018, 8: 1701791
Meng X, Zhang L, Xie Y, Hu X, Xing Z, Huang Z, Liu C, Tan L, Zhou W, Sun Y, Ma W, Chen Y. Adv Mater, 2019, 31: 1903649
Zhang K, Chen Z, Armin A, Dong S, Xia R, Yip HL, Shoaee S, Huang F, Cao Y. Sol RRL, 2018, 2: 1700169
Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497
Zuo L, Jo SB, Li Y, Meng Y, Stoddard RJ, Liu Y, Lin F, Shi X, Liu F, Hillhouse HW, Ginger DS, Chen H, Jen AKY. Nat Nanotechnol, 2022, 17: 53–60
Xian K, Cui Y, Xu Y, Zhang T, Hong L, Yao H, An C, Hou J. J Phys Chem C, 2020, 124: 7691–7698
Wang R, Zhang C, Li Q, Zhang Z, Wang X, Xiao M. J Am Chem Soc, 2020, 142: 12751–12759
Lee H, Park C, Sin DH, Park JH, Cho K. Adv Mater, 2018, 30: 1800453
Li T, Zhan X. Acta Chim Sin, 2021, 79: 257–283
Cheng S, Wang L, Guo C, Li D, Cai J, Miao W, Du B, Wang P, Liu D, Wang T. Polymer, 2021, 236: 124322
Sun R, Wang T, Wu Y, Zhang M, Ma Y, Xiao Z, Lu G, Ding L, Zheng Q, Brabec CJ, Li Y, Min J. Adv Funct Mater, 2021, 31: 2106846
Liao Q, Li B, Sun H, Koh CW, Zhang X, Liu B, Woo HY, Guo X. Mater Rep-Energy, 2021, 1: 100063
Yao J, Qiu B, Zhang ZG, Xue L, Wang R, Zhang C, Chen S, Zhou Q, Sun C, Yang C, Xiao M, Meng L, Li Y. Nat Commun, 2020, 11: 2726
Liu J, Liu Y, Wang J, Li H, Zhou K, Gui R, Xian K, Qi Q, Yang X, Chen Y, Zhao W, Yin H, Zhao K, Zhou Z, Ye L. Adv Energy Mater, 2022, 12: 2201975
Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: 2102420
Chong K, Xu X, Meng H, Xue J, Yu L, Ma W, Peng Q. Adv Mater, 2022, 34: 2109516
Sun R, Wu Y, Yang X, Gao Y, Chen Z, Li K, Qiao J, Wang T, Guo J, Liu C, Hao X, Zhu H, Min J. Adv Mater, 2022, 34: 2110147
He C, Pan Y, Ouyang Y, Shen Q, Gao Y, Yan K, Fang J, Chen Y, Ma CQ, Min J, Zhang C, Zuo L, Chen H. Energy Environ Sci, 2022, 15: 2537–2544
Li N, Perea JD, Kassar T, Richter M, Heumueller T, Matt GJ, Hou Y, Güldal NS, Chen H, Chen S, Langner S, Berlinghof M, Unruh T, Brabec CJ. Nat Commun, 2017, 8: 14541
Ye L, Gao M, Hou J. Sci China Chem, 2021, 64: 1875–1887
Shi M, Wang T, Wu Y, Sun R, Wang W, Guo J, Wu Q, Yang W, Min J. Adv Energy Mater, 2021, 11: 2002709
Su Y, Zhang L, Ding Z, Zhang Y, Wu Y, Duan Y, Zhang Q, Zhang J, Han Y, Xu Z, Zhang R, Zhao K, Liu SF. Adv Energy Mater, 2022, 12: 2103940
Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Adv Mater, 2012, 24: 580–612
Peters IM, Hauch J, Brabec C, Sinha P. Joule, 2021, 5: 3137–3153
Cheng P, Zhan X. Chem Soc Rev, 2016, 45: 2544–2582
Burlingame Q, Ball M, Loo YL. Nat Energy, 2020, 5: 947–949
Xian K, Geng Y, Ye L. Joule, 2022, 6: 941–944
Malla RB, Brown KM. Acta Astronaut, 2015, 107: 196–207
Hsieh YJ, Huang YC, Liu WS, Su YA, Tsao CS, Rwei SP, Wang L. ACS Appl Mater Interfaces, 2017, 9: 14808–14816
Feng G, Li J, He Y, Zheng W, Wang J, Li C, Tang Z, Osvet A, Li N, Brabec CJ, Yi Y, Yan H, Li W. Joule, 2019, 3: 1765–1781
Chen F, Zhang Y, Wang Q, Gao M, Kirby N, Peng Z, Deng Y, Li M, Ye L. Chin J Chem, 2021, 39: 2570–2578
Müller C. Chem Mater, 2015, 27: 2740–2754
Yang W, Luo Z, Sun R, Guo J, Wang T, Wu Y, Wang W, Guo J, Wu Q, Shi M, Li H, Yang C, Min J. Nat Commun, 2020, 11: 1218
Lai H, Chen H, Zhou J, Qu J, Wang M, Xie W, Xie Z, He F. J Phys Chem Lett, 2019, 10: 4737–4743
Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234
Ma Y, Wang P, Lin W, Wang W, Cai D, Zheng Q. Chem Eng J, 2022, 432: 134393
Xian K, Liu Y, Liu J, Yu J, Xing Y, Peng Z, Zhou K, Gao M, Zhao W, Lu G, Zhang J, Hou J, Geng Y, Ye L. J Mater Chem A, 2022, 10: 3418–3429
Zhang Y, Ji Y, Zhang Y, Zhang W, Bai H, Du M, Wu H, Guo Q, Zhou E. Adv Funct Mater, 2022, 32: 2205115
Li D, Sun C, Yan T, Yuan J, Zou Y. ACS Cent Sci, 2021, 7: 1787–1797
Li C, Fu H, Xia T, Sun Y. Adv Energy Mater, 2019, 9: 1900999
Wang J, Zhang M, Lin J, Zheng Z, Zhu L, Bi P, Liang H, Guo X, Wu J, Wang Y, Yu L, Li J, Lv J, Liu X, Liu F, Hou J, Li Y. Energy Environ Sci, 2022, 15: 1585–1593
Chen J, Cao J, Liu L, Xie L, Zhou H, Zhang J, Zhang K, Xiao M, Huang F. Adv Funct Mater, 2022, 32: 2200629
Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J. Adv Mater, 2019, 31: 1903441
Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104
Takacs CJ, Sun Y, Welch GC, Perez LA, Liu X, Wen W, Bazan GC, Heeger AJ. J Am Chem Soc, 2012, 134: 16597–16606
Yang D, Jiao Y, Yang L, Chen Y, Mizoi S, Huang Y, Pu X, Lu Z, Sasabe H, Kido J. J Mater Chem A, 2015, 3: 17704–17712
Li M, Zhou Y, Zhang J, Song J, Bo Z. J Mater Chem A, 2019, 7: 8889–8896
Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H. Nat Mater, 2018, 17: 253–260
Ye L, Li S, Liu X, Zhang S, Ghasemi M, Xiong Y, Hou J, Ade H. Joule, 2019, 3: 443–458
Yang C, Zhang S, Ren J, Gao M, Bi P, Ye L, Hou J. Energy Environ Sci, 2020, 13: 2864–2869
Gao J, Ma X, Xu C, Wang X, Son JH, Jeong SY, Zhang Y, Zhang C, Wang K, Niu L, Zhang J, Woo HY, Zhang J, Zhang F. Chem Eng J, 2022, 428: 129276
Koster LJA, Kemerink M, Wienk MM, Maturová K, Janssen RAJ. Adv Mater, 2011, 23: 1670–1674
Gupta V, Kyaw AKK, Wang DH, Chand S, Bazan GC, Heeger AJ. Sci Rep, 2013, 3: 1965
Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577
Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl Sci Rev, 2020, 7: 1239–1246
Ma X, Wang J, Gao J, Hu Z, Xu C, Zhang X, Zhang F. Adv Energy Mater, 2020, 10: 2001404
Mukherjee S, Herzing AA, Zhao D, Wu Q, Yu L, Ade H, DeLongchamp DM, Richter LJ. J Mater Res, 2017, 32: 1921–1934
Ye L, Xiong Y, Li S, Ghasemi M, Balar N, Turner J, Gadisa A, Hou J, O’Connor BT, Ade H. Adv Funct Mater, 2017, 27: 1702016
Mukherjee S, Jiao X, Ade H. Adv Energy Mater, 2016, 6: 1600699
Baker JL, Jimison LH, Mannsfeld S, Volkman S, Yin S, Subramanian V, Salleo A, Alivisatos AP, Toney MF. Langmuir, 2010, 26: 9146–9151
Page KA, Kusoglu A, Stafford CM, Kim S, Kline RJ, Weber AZ. Nano Lett, 2014, 14: 2299–2304
Johnston DE, Yager KG, Hlaing H, Lu X, Ocko BM, Black CT. ACS Nano, 2014, 8: 243–249
Hlaing H, Lu X, Hofmann T, Yager KG, Black CT, Ocko BM. ACS Nano, 2011, 5: 7532–7538
Ma L, Yao H, Wang J, Xu Y, Gao M, Zu Y, Cui Y, Zhang S, Ye L, Hou J. Angew Chem Int Ed, 2021, 60: 15988–15994
Xiao Y, Lu X. Mater Today Nano, 2019, 5: 100030
Ma Y, Zhang M, Wan S, Yin P, Wang P, Cai D, Liu F, Zheng Q. Joule, 2021, 5: 197–209
Chaney TP, Levin AJ, Schneider SA, Toney MF. Mater Horiz, 2022, 9: 43–60
Peng Z, Ye L, Ade H. Mater Horiz, 2022, 9: 577–606
Shen X, Hu W, Russell TP. Macromolecules, 2016, 49: 4501–4509
Qin Y, Balar N, Peng Z, Gadisa A, Angunawela I, Bagui A, Kashani S, Hou J, Ade H. Joule, 2021, 5: 2129–2147
Liang Z, Li M, Wang Q, Qin Y, Stuard SJ, Peng Z, Deng Y, Ade H, Ye L, Geng Y. Joule, 2020, 4: 1278–1295
Yuan X, Zhao Y, Xie D, Pan L, Liu X, Duan C, Huang F, Cao Y. Joule, 2022, 6: 647–661
Gasparini N, Paleti SHK, Bertrandie J, Cai G, Zhang G, Wadsworth A, Lu X, Yip HL, McCulloch I, Baran D. ACS Energy Lett, 2020, 5: 1371–1379
Hultmark S, Paleti SHK, Harillo A, Marina S, Nugroho FAA, Liu Y, Ericsson LKE, Li R, Martín J, Bergqvist J, Langhammer C, Zhang F, Yu L, Campoy-Quiles M, Moons E, Baran D, Müller C. Adv Funct Mater, 2020, 30: 2005462
Lee JW, Sun C, Kim DJ, Ha MY, Han D, Park JS, Wang C, Lee WB, Kwon SK, Kim TS, Kim YH, Kim BJ. ACS Nano, 2021, 15: 19970–19980
Li F, Yager KG, Dawson NM, Jiang YB, Malloy KJ, Qin Y. Chem Mater, 2014, 26: 3747–3756
Acknowledgements
This work was supported by the National Natural Science Foundation of China (52073207, 52121002) and the Fundamental Research Funds for the Central Universities. L. Ye also appreciates the Peiyang Scholar Program of Tianjin University for support. Z. Fei and S. Zhang thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support. GIWAXS data acquisition at the beamline BL16B1 of Shanghai Synchrotron Radiation Facility (SSRF). Besides, the GIWAXS data were also checked at the beamline BL14B1 of SSRF and the beamline 1W1A of Beijing Synchrotron Radiation Facility (BSRF).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Conflict of interest
The authors declare no conflict of interest.
Supporting information
The supporting information is available online at http://chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Electronic Supplementary Material
11426_2022_1394_MOESM1_ESM.pdf
Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability
Rights and permissions
About this article
Cite this article
Xian, K., Zhang, S., Xu, Y. et al. Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability. Sci. China Chem. 66, 202–215 (2023). https://doi.org/10.1007/s11426-022-1394-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-022-1394-y
- organic photovoltaics
- asymmetric acceptor
- miscibility
- aggregation
- thermal stability