Skip to main content
Log in

The chemistry and physics of organic—inorganic hybrid perovskite quantum wells

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic—inorganic hybrid two dimensional (2D) lead halide perovskites (LHPs) are tunable quantum wells that exhibit a set of intriguing structural and physical properties including soft and dynamic lattices, organic—inorganic epitaxial heterointerfaces, quantum and dielectric confinements, strong light—matter interactions, and large spin—orbit coupling, which enable promising perspectives for optoelectronics, ferroelectrics, and spintronics. While the properties of 2D LHPs bear some resemblance of the 3D LHPs, they are often drastically altered due to the reduced dimensionality and the complex interactions between organic and inorganic components. In this review, we discuss the influences of the reduced dimensionality and the organic—inorganic interplays on the structural stability and distortion of the inorganic lattices, inversion symmetry of the crystal structure, electronic band structures, excitonic physics, and carrier—phonon interactions in 2D LHPs. An emphasis is placed on the relationships between the crystal structures and photophysical properties. Future perspectives on the opportunities of hybrid quantum wells are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller DAB. Optical physics of quantum wells. In: Oppo GL, Barnett SM, Riis E, Wilkinson M, Eds. Quantum Dynamics of Simple Systems. London: Institute Physics, 1996. 239–266

    Google Scholar 

  2. Katan C, Mercier N, Even J. Chem Rev, 2019, 119: 3140–3192

    Article  CAS  PubMed  Google Scholar 

  3. Saparov B, Mitzi DB. Chem Rev, 2016, 116: 4558–4596

    Article  CAS  PubMed  Google Scholar 

  4. Li T, Goldberger JE. Chem Mater, 2015, 27: 3549–3559

    Article  CAS  Google Scholar 

  5. Huang X, Li J. J Am Chem Soc, 2007, 129: 3157–3162

    Article  CAS  PubMed  Google Scholar 

  6. Huang X, Li J, Fu H. J Am Chem Soc, 2000, 122: 8789–8790

    Article  CAS  Google Scholar 

  7. Paritmongkol W, Sakurada T, Lee WS, Wan R, Müller P, Tisdale WA. J Am Chem Soc, 2021, 143: 20256–20263

    Article  CAS  PubMed  Google Scholar 

  8. Bianco E, Butler S, Jiang S, Restrepo OD, Windl W, Goldberger JE. ACS Nano, 2013, 7: 4414–4421

    Article  CAS  PubMed  Google Scholar 

  9. Fu Y, Zhu H, Chen J, Hautzinger MP, Zhu XY, Jin S. Nat Rev Mater, 2019, 4: 169–188

    Article  CAS  Google Scholar 

  10. Mao L, Stoumpos CC, Kanatzidis MG. J Am Chem Soc, 2019, 141: 1171–1190

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Hoffman JM, Kanatzidis MG. Chem Rev, 2021, 121: 2230–2291

    Article  CAS  PubMed  Google Scholar 

  12. Jana MK, Song R, Liu H, Khanal DR, Janke SM, Zhao R, Liu C, Valy Vardeny Z, Blum V, Mitzi DB. Nat Commun, 2020, 11: 4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mao L, Chen J, Vishnoi P, Cheetham AK. Acc Mater Res, 2022, 3: 439–448

    Article  CAS  Google Scholar 

  14. Li J, Bi W, Ki W, Huang X, Reddy S. J Am Chem Soc, 2007, 129: 14140–14141

    Article  CAS  PubMed  Google Scholar 

  15. Blancon JC, Even J, Stoumpos CC, Kanatzidis MG, Mohite AD. Nat Nanotechnol, 2020, 15: 969–985

    Article  CAS  PubMed  Google Scholar 

  16. Guo P, Gong J, Sadasivam S, Xia Y, Song TB, Diroll BT, Stoumpos CC, Ketterson JB, Kanatzidis MG, Chan MKY, Darancet P, Xu T, Schaller RD. Nat Commun, 2018, 9: 2792

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mauck CM, Tisdale WA. Trends Chem, 2019, 1: 380–393

    Article  CAS  Google Scholar 

  18. Long G, Sabatini R, Saidaminov MI, Lakhwani G, Rasmita A, Liu X, Sargent EH, Gao W. Nat Rev Mater, 2020, 5: 423–439

    Article  Google Scholar 

  19. Fu Y, Jin S, Zhu XY. Nat Rev Chem, 2021, 5: 838–852

    Article  CAS  Google Scholar 

  20. Liu XK, Xu W, Bai S, Jin Y, Wang J, Friend RH, Gao F. Nat Mater, 2021, 20: 10–21

    Article  CAS  PubMed  Google Scholar 

  21. Filip MR, Qiu DY, Del Ben M, Neaton JB. Nano Lett, 2022, 22: 4870–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu Y. Adv Mater, 2022, 34: 2108556

    Article  CAS  Google Scholar 

  23. Fu Y, Hautzinger MP, Luo Z, Wang F, Pan D, Aristov MM, Guzei IA, Pan A, Zhu X, Jin S. ACS Cent Sci, 2019, 5: 1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu Y, Rea MT, Chen J, Morrow DJ, Hautzinger MP, Zhao Y, Pan D, Manger LH, Wright JC, Goldsmith RH, Jin S. Chem Mater, 2017, 29: 8385–8394

    Article  CAS  Google Scholar 

  25. Fu Y, Wu T, Wang J, Zhai J, Shearer MJ, Zhao Y, Hamers RJ, Kan E, Deng K, Zhu XY, Jin S. Nano Lett, 2017, 17: 4405–4414

    Article  CAS  PubMed  Google Scholar 

  26. Zhao B, Jin SF, Huang S, Liu N, Ma JY, Xue DJ, Han Q, Ding J, Ge QQ, Feng Y, Hu JS. J Am Chem Soc, 2018, 140: 11716–11725

    Article  CAS  PubMed  Google Scholar 

  27. Jiang Q, Ward MD. Chem Soc Rev, 2014, 43: 2066–2079

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Fu Y, Pedesseau L, Guo P, Cuthriell S, Hadar I, Even J, Katan C, Stoumpos CC, Schaller RD, Harel E, Kanatzidis MG. J Am Chem Soc, 2020, 142: 11486–11496

    Article  CAS  PubMed  Google Scholar 

  29. Fu Y, Jiang X, Li X, Traore B, Spanopoulos I, Katan C, Even J, Kanatzidis MG, Harel E. J Am Chem Soc, 2020, 142: 4008–4021

    Article  CAS  PubMed  Google Scholar 

  30. Han S, Liu X, Liu Y, Xu Z, Li Y, Hong M, Luo J, Sun Z. J Am Chem Soc, 2019, 141: 12470–12474

    Article  CAS  PubMed  Google Scholar 

  31. Mao L, Wu Y, Stoumpos CC, Traore B, Katan C, Even J, Wasielewski MR, Kanatzidis MG. J Am Chem Soc, 2017, 139: 11956–11963

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Liu X, Li L, Ji C, Sun Z, Wu Z, Hong M, Luo J. J Am Chem Soc, 2019, 141: 7693–7697

    Article  CAS  PubMed  Google Scholar 

  33. Houghton DC, Davies M, Dion M. Appl Phys Lett, 1994, 64: 505–507

    Article  CAS  Google Scholar 

  34. Kepenekian M, Traore B, Blancon JC, Pedesseau L, Tsai H, Nie W, Stoumpos CC, Kanatzidis MG, Even J, Mohite AD, Tretiak S, Katan C. Nano Lett, 2018, 18: 5603–5609

    Article  CAS  PubMed  Google Scholar 

  35. Du L, Hasan T, Castellanos-Gomez A, Liu GB, Yao Y, Lau CN, Sun Z. Nat Rev Phys, 2021, 3: 193–206

    Article  CAS  Google Scholar 

  36. Stoumpos CC, Frazer L, Clark DJ, Kim YS, Rhim SH, Freeman AJ, Ketterson JB, Jang JI, Kanatzidis MG. J Am Chem Soc, 2015, 137: 6804–6819

    Article  CAS  PubMed  Google Scholar 

  37. Fabini DH, Laurita G, Bechtel JS, Stoumpos CC, Evans HA, Kontos AG, Raptis YS, Falaras P, Van der Ven A, Kanatzidis MG, Seshadri R. J Am Chem Soc, 2016, 138: 11820–11832

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Parsonnet E, Fernandez A, Griffin SM, Huyan H, Lin CK, Lei T, Jin J, Barnard ES, Raja A, Behera P, Pan X, Ramesh R, Yang P. Sci Adv, 2022, 8: eabj5881

    Article  CAS  PubMed  Google Scholar 

  39. Radha SK, Bhandari C, Lambrecht WRL. Phys Rev Mater, 2018, 2: 63605

    Article  CAS  Google Scholar 

  40. Bechtel JS, Van der Ven A. Phys Rev Mater, 2018, 2: 25401

    Article  CAS  Google Scholar 

  41. Benedek NA, Fennie CJ. J Phys Chem C, 2013, 117: 13339–13349

    Article  CAS  Google Scholar 

  42. Huang X, Li X, Tao Y, Guo S, Gu J, Hong H, Yao Y, Guan Y, Gao Y, Li C, Lü X, Fu Y. J Am Chem Soc, 2022, 144: 12247–12260

    Article  CAS  PubMed  Google Scholar 

  43. Shi PP, Tang YY, Li PF, Liao WQ, Wang ZX, Ye Q, Xiong RG. Chem Soc Rev, 2016, 45: 3811–3827

    Article  CAS  PubMed  Google Scholar 

  44. McNulty JA, Lightfoot P. IUCrJ, 2021, 8: 485–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Billing DG, Lemmerer A. Acta Crystlogr B Struct Sci, 2007, 63: 735–747

    Article  CAS  Google Scholar 

  46. Lemmerer A, Billing DG. Dalton Trans, 2012, 41: 1146–1157

    Article  CAS  PubMed  Google Scholar 

  47. Whitfield PS, Herron N, Guise WE, Page K, Cheng YQ, Milas I, Crawford MK. Sci Rep, 2016, 6: 35685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Polimeno L, Lerario G, De Giorgi M, De Marco L, Dominici L, Todisco F, Coriolano A, Ardizzone V, Pugliese M, Prontera CT, Maiorano V, Moliterni A, Giannini C, Olieric V, Gigli G, Ballarini D, Xiong Q, Fieramosca A, Solnyshkov DD, Malpuech G, Sanvitto D. Nat Nanotechnol, 2021, 16: 1349–1354

    Article  CAS  PubMed  Google Scholar 

  49. Spencer MS, Fu Y, Schlaus AP, Hwang D, Dai Y, Smith MD, Gamelin DR, Zhu XY. Sci Adv, 2021, 7: eabj7667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marchenko EI, Korolev VV, Mitrofanov A, Fateev SA, Goodilin EA, Tarasov AB. Chem Mater, 2021, 33: 1213–1217

    Article  CAS  Google Scholar 

  51. Liao WQ, Zhang Y, Hu CL, Mao JG, Ye HY, Li PF, Huang SD, Xiong RG. Nat Commun, 2015, 6: 7338

    Article  PubMed  Google Scholar 

  52. Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J. ACS Nano, 2015, 9: 11557–11567

    Article  CAS  PubMed  Google Scholar 

  53. Schmitt T, Bourelle S, Tye N, Soavi G, Bond AD, Feldmann S, Traore B, Katan C, Even J, Dutton SE, Deschler F. J Am Chem Soc, 2020, 142: 5060–5067

    Article  CAS  PubMed  Google Scholar 

  54. Li L, Sun Z, Wang P, Hu W, Wang S, Ji C, Hong M, Luo J. Angew Chem Int Ed, 2017, 56: 12150–12154

    Article  CAS  Google Scholar 

  55. Li L, Liu X, He C, Wang S, Ji C, Zhang X, Sun Z, Zhao S, Hong M, Luo J. J Am Chem Soc, 2020, 142: 1159–1163

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y, Lou F, Xiang H. Nano Lett, 2021, 21: 3170–3176

    Article  CAS  PubMed  Google Scholar 

  57. Zhang HY, Zhang ZX, Song XJ, Chen XG, Xiong RG. J Am Chem Soc, 2020, 142: 20208–20215

    Article  CAS  PubMed  Google Scholar 

  58. Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski MR, Stoumpos CC, Kanatzidis MG. J Am Chem Soc, 2018, 140: 3775–3783

    Article  CAS  PubMed  Google Scholar 

  59. Hautzinger MP, Dai J, Ji Y, Fu Y, Chen J, Guzei IA, Wright JC, Li Y, Jin S. Inorg Chem, 2017, 56: 14991–14998

    Article  CAS  PubMed  Google Scholar 

  60. Peng Y, Bie J, Liu X, Li L, Chen S, Fa W, Wang S, Sun Z, Luo J. Angew Chem Int Ed, 2021, 60: 2839–2843

    Article  CAS  Google Scholar 

  61. Li X, Cuthriell SA, Bergonzoni A, Dong H, Traoré B, Stoumpos CC, Guo P, Even J, Katan C, Schaller RD, Kanatzidis MG. Chem Mater, 2022, 34: 1132–1142

    Article  CAS  Google Scholar 

  62. Feng T, Wang Z, Zhang Z, Xue J, Lu H. Nanoscale, 2021, 13: 18925–18940

    Article  CAS  PubMed  Google Scholar 

  63. Lu H, Xiao C, Song R, Li T, Maughan AE, Levin A, Brunecky R, Berry JJ, Mitzi DB, Blum V, Beard MC. J Am Chem Soc, 2020, 142: 13030–13040

    Article  CAS  PubMed  Google Scholar 

  64. Ma J, Fang C, Chen C, Jin L, Wang J, Wang S, Tang J, Li D. ACS Nano, 2019, 13: 3659–3665

    Article  CAS  PubMed  Google Scholar 

  65. Jana MK, Song R, Xie Y, Zhao R, Sercel PC, Blum V, Mitzi DB. Nat Commun, 2021, 12: 4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang CK, Chen WN, Ding YT, Wang J, Rao Y, Liao WQ, Tang YY, Li PF, Wang ZX, Xiong RG. Adv Mater, 2019, 31: 1808088

    Article  Google Scholar 

  67. Lu H, Vardeny ZV, Beard MC. Nat Rev Chem, 2022, 6: 470–485

    Article  Google Scholar 

  68. Boström HLB, Senn MS, Goodwin AL. Nat Commun, 2018, 9: 2380

    Article  PubMed  PubMed Central  Google Scholar 

  69. Benedek NA, Fennie CJ. Phys Rev Lett, 2011, 106: 107204

    Article  PubMed  Google Scholar 

  70. Park IH, Zhang Q, Kwon KC, Zhu Z, Yu W, Leng K, Giovanni D, Choi HS, Abdelwahab I, Xu QH, Sum TC, Loh KP. J Am Chem Soc, 2019, 141: 15972–15976

    Article  CAS  PubMed  Google Scholar 

  71. Grinberg I, West DV, Torres M, Gou G, Stein DM, Wu L, Chen G, Gallo EM, Akbashev AR, Davies PK, Spanier JE, Rappe AM. Nature, 2013, 503: 509–512

    Article  CAS  PubMed  Google Scholar 

  72. Rappe AM, Grinberg I, Spanier JE. Proc Natl Acad Sci USA, 2017, 114: 7191–7193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim M, Im J, Freeman AJ, Ihm J, Jin H. Proc Natl Acad Sci USA, 2014, 111: 6900–6904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Blancon JC, Stier AV, Tsai H, Nie W, Stoumpos CC, Traoré B, Pedesseau L, Kepenekian M, Katsutani F, Noe GT, Kono J, Tretiak S, Crooker SA, Katan C, Kanatzidis MG, Crochet JJ, Even J, Mohite AD. Nat Commun, 2018, 9: 2254

    Article  PubMed  PubMed Central  Google Scholar 

  75. Umebayashi T, Asai K, Kondo T, Nakao A. Phys Rev B, 2003, 67: 155405

    Article  Google Scholar 

  76. Liu G, Gong J, Kong L, Schaller RD, Hu Q, Liu Z, Yan S, Yang W, Stoumpos CC, Kanatzidis MG, Mao HK, Xu T. Proc Natl Acad Sci USA, 2018, 115: 8076–8081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shih MC, Hsu HC, Lin CC, Huang SK, Chen TP, Tsai YH, Chen CC, Chiu YP, Chen CW. Nano Lett, 2021, 21: 8066–8072

    Article  CAS  PubMed  Google Scholar 

  78. Knutson JL, Martin JD, Mitzi DB. Inorg Chem, 2005, 44: 4699–4705

    Article  CAS  PubMed  Google Scholar 

  79. Baranowski M, Zelewski SJ, Kepenekian M, Traoré B, Urban JM, Surrente A, Galkowski K, Maude DK, Kuc A, Booker EP, Kudrawiec R, Stranks SD, Plochocka P. ACS Energy Lett, 2019, 4: 2386–2392

    Article  CAS  Google Scholar 

  80. Dyksik M, Wang S, Paritmongkol W, Maude DK, Tisdale WA, Baranowski M, Plochocka P. J Phys Chem Lett, 2021, 12: 1638–1643

    Article  CAS  PubMed  Google Scholar 

  81. Dyksik M, Duim H, Zhu X, Yang Z, Gen M, Kohama Y, Adjokatse S, Maude DK, Loi MA, Egger DA, Baranowski M, Plochocka P. ACS Energy Lett, 2020, 5: 3609–3616

    Article  CAS  Google Scholar 

  82. Zhai Y, Baniya S, Zhang C, Li J, Haney P, Sheng CX, Ehrenfreund E, Vardeny ZV. Sci Adv, 2017, 3: e1700704

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pedesseau L, Sapori D, Traore B, Robles R, Fang HH, Loi MA, Tsai H, Nie W, Blancon JC, Neukirch A, Tretiak S, Mohite AD, Katan C, Even J, Kepenekian M. ACS Nano, 2016, 10: 9776–9786

    Article  CAS  PubMed  Google Scholar 

  84. Wang F, Gao H, de Graaf C, Poblet JM, Campbell BJ, Stroppa A. npj Comput Mater, 2020, 6: 183

    Article  CAS  Google Scholar 

  85. Ema K, Inomata M, Kato Y, Kunugita H, Era M. Phys Rev Lett, 2008, 100: 257401

    Article  CAS  PubMed  Google Scholar 

  86. Chondroudis K, Mitzi DB. Chem Mater, 1999, 11: 3028–3030

    Article  CAS  Google Scholar 

  87. Gao Y, Wei Z, Yoo P, Shi E, Zeller M, Zhu C, Liao P, Dou L. J Am Chem Soc, 2019, 141: 15577–15585

    Article  CAS  PubMed  Google Scholar 

  88. Mitzi DB, Chondroudis K, Kagan CR. Inorg Chem, 1999, 38: 6246–6256

    Article  CAS  PubMed  Google Scholar 

  89. Liu C, Huhn W, Du KZ, Vazquez-Mayagoitia A, Dirkes D, You W, Kanai Y, Mitzi DB, Blum V. Phys Rev Lett, 2018, 121: 146401

    Article  CAS  PubMed  Google Scholar 

  90. Passarelli JV, Mauck CM, Winslow SW, Perkinson CF, Bard JC, Sai H, Williams KW, Narayanan A, Fairfield DJ, Hendricks MP, Tisdale WA, Stupp SI. Nat Chem, 2020, 12: 672–682

    Article  CAS  PubMed  Google Scholar 

  91. Gao Y, Shi E, Deng S, Shiring SB, Snaider JM, Liang C, Yuan B, Song R, Janke SM, Liebman-Peláez A, Yoo P, Zeller M, Boudouris BW, Liao P, Zhu C, Blum V, Yu Y, Savoie BM, Huang L, Dou L. Nat Chem, 2019, 11: 1151–1157

    Article  CAS  PubMed  Google Scholar 

  92. Deng S, Snaider JM, Gao Y, Shi E, Jin L, Schaller RD, Dou L, Huang L. J Chem Phys, 2020, 152: 044711

    Article  CAS  PubMed  Google Scholar 

  93. Tanaka K, Kondo T. Sci Tech Adv Mater, 2003, 4: 599–604

    Article  CAS  Google Scholar 

  94. Tanaka K, Takahashi T, Kondo T, Umebayashi T, Asai K, Ema K. Phys Rev B, 2005, 71: 45312

    Article  Google Scholar 

  95. Yaffe O, Chernikov A, Norman ZM, Zhong Y, Velauthapillai A, van der Zande A, Owen JS, Heinz TF. Phys Rev B, 2015, 92: 45414

    Article  Google Scholar 

  96. Yao K, Collins MS, Nell KM, Barnard ES, Borys NJ, Kuykendall T, Hohman JN, Schuck PJ. ACS Nano, 2021, 15: 4085–4092

    Article  CAS  PubMed  Google Scholar 

  97. Liang Y, Shang Q, Wei Q, Zhao L, Liu Z, Shi J, Zhong Y, Chen J, Gao Y, Li M, Liu X, Xing G, Zhang Q. Adv Mater, 2019, 31: 1903030

    Article  Google Scholar 

  98. Straus DB, Kagan CR. J Phys Chem Lett, 2018, 9: 1434–1447

    Article  CAS  PubMed  Google Scholar 

  99. Cheng B, Li TY, Maity P, Wei PC, Nordlund D, Ho KT, Lien DH, Lin CH, Liang RZ, Miao X, Ajia IA, Yin J, Sokaras D, Javey A, Roqan IS, Mohammed OF, He JH. Commun Phys, 2018, 1: 80

    Article  Google Scholar 

  100. García-Benito I, Quarti C, Queloz VIE, Orlandi S, Zimmermann I, Cavazzini M, Lesch A, Marras S, Beljonne D, Pozzi G, Nazeeruddin MK, Grancini G. Chem Mater, 2018, 30: 8211–8220

    Article  Google Scholar 

  101. Smith IC, Smith MD, Jaffe A, Lin Y, Karunadasa HI. Chem Mater, 2017, 29: 1868–1884

    Article  CAS  Google Scholar 

  102. Mitzi DB, Medeiros DR, Malenfant PRL. Inorg Chem, 2002, 41: 2134–2145

    Article  CAS  PubMed  Google Scholar 

  103. Smith MD, Pedesseau L, Kepenekian M, Smith IC, Katan C, Even J, Karunadasa HI. Chem Sci, 2017, 8: 1960–1968

    Article  CAS  PubMed  Google Scholar 

  104. Williams RT, Song KS. J Phys Chem Solids, 1990, 51: 679–716

    Article  CAS  Google Scholar 

  105. Srimath Kandada AR, Silva C. J Phys Chem Lett, 2020, 11: 3173–3184

    Article  CAS  PubMed  Google Scholar 

  106. Buizza LRV, Herz LM. Adv Mater, 2021, 33: 2007057

    Article  CAS  Google Scholar 

  107. Hoye RLZ, Hidalgo J, Jagt RA, Correa-Baena JP, Fix T, MacManus-Driscoll JL. Adv Energy Mater, 2022, 12: 2100499

    Article  CAS  Google Scholar 

  108. Wright AD, Verdi C, Milot RL, Eperon GE, Pérez-Osorio MA, Snaith HJ, Giustino F, Johnston MB, Herz LM. Nat Commun, 2016, 7: 11755

    Article  Google Scholar 

  109. Zhu XY, Podzorov V. J Phys Chem Lett, 2015, 6: 4758–4761

    Article  CAS  PubMed  Google Scholar 

  110. Yu ZG. Phys Chem Chem Phys, 2019, 21: 22293–22301

    Article  CAS  PubMed  Google Scholar 

  111. Kaasbjerg K, Thygesen KS, Jacobsen KW. Phys Rev B, 2012, 85: 115317

    Article  Google Scholar 

  112. Fivaz R, Mooser E. Phys Rev, 1964, 136: A833–A836

    Article  Google Scholar 

  113. Bardeen J, Shockley W. Phys Rev, 1950, 80: 72–80

    Article  CAS  Google Scholar 

  114. Fivaz R, Mooser E. Phys Rev, 1967, 163: 743–755

    Article  CAS  Google Scholar 

  115. Guo Z, Wu X, Zhu T, Zhu X, Huang L. ACS Nano, 2016, 10: 9992–9998

    Article  CAS  PubMed  Google Scholar 

  116. Ni L, Huynh U, Cheminal A, Thomas TH, Shivanna R, Hinrichsen TF, Ahmad S, Sadhanala A, Rao A. ACS Nano, 2017, 11: 10834–10843

    Article  CAS  PubMed  Google Scholar 

  117. Thouin F, Valverde-Chávez DA, Quarti C, Cortecchia D, Bargigia I, Beljonne D, Petrozza A, Silva C, Srimath Kandada AR. Nat Mater, 2019, 18: 349–356

    Article  CAS  PubMed  Google Scholar 

  118. Toyozawa Y. J Lumin, 1981, 24–25: 23–30

    Article  Google Scholar 

  119. Sumi H, Toyozawa Y. J Phys Soc Jpn, 1971, 31: 342–358

    Article  CAS  Google Scholar 

  120. Schreiber M, Toyozawa Y. J Phys Soc Jpn, 1982, 51: 1544–1550

    Article  CAS  Google Scholar 

  121. Tao W, Zhang C, Zhou Q, Zhao Y, Zhu H. Nat Commun, 2021, 12: 1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Smith MD, Jaffe A, Dohner ER, Lindenberg AM, Karunadasa HI. Chem Sci, 2017, 8: 4497–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gautier R, Paris M, Massuyeau F. J Am Chem Soc, 2019, 141: 12619–12623

    Article  CAS  PubMed  Google Scholar 

  124. Masada S, Yamada T, Tahara H, Hirori H, Saruyama M, Kawawaki T, Sato R, Teranishi T, Kanemitsu Y. Nano Lett, 2020, 20: 4022–4028

    Article  CAS  PubMed  Google Scholar 

  125. Ledinsky M, Schönfeldová T, Holovský J, Aydin E, Hájková Z, Landová L, Neyková N, Fejfar A, De Wolf S. J Phys Chem Lett, 2019, 10: 1368–1373

    Article  CAS  PubMed  Google Scholar 

  126. Tao W, Zhang Y, Zhu H. Acc Chem Res, 2022, 55: 345–353

    Article  CAS  PubMed  Google Scholar 

  127. Horiguchi R, Iwasaki N, Maruyama Y. J Phys Chem, 1987, 91: 5135–5139

    Article  CAS  Google Scholar 

  128. Smith MD, Karunadasa HI. Acc Chem Res, 2018, 51: 619–627

    Article  CAS  PubMed  Google Scholar 

  129. Paritmongkol W, Powers ER, Dahod NS, Tisdale WA. J Phys Chem Lett, 2020, 11: 8565–8572

    Article  CAS  PubMed  Google Scholar 

  130. Gong X, Voznyy O, Jain A, Liu W, Sabatini R, Piontkowski Z, Walters G, Bappi G, Nokhrin S, Bushuyev O, Yuan M, Comin R, McCamant D, Kelley SO, Sargent EH. Nat Mater, 2018, 17: 550–556

    Article  CAS  PubMed  Google Scholar 

  131. Mauck CM, France-Lanord A, Oendra ACH, Dahod NS, Grossman JC, Tisdale WA. J Phys Chem C, 2019, 123: 27904–27916

    Article  CAS  Google Scholar 

  132. Menahem M, Dai Z, Aharon S, Sharma R, Asher M, Diskin-Posner Y, Korobko R, Rappe AM, Yaffe O. ACS Nano, 2021, 15: 10153–10162

    Article  PubMed  PubMed Central  Google Scholar 

  133. Dhanabalan B, Leng YC, Biffi G, Lin ML, Tan PH, Infante I, Manna L, Arciniegas MP, Krahne R. ACS Nano, 2020, 14: 4689–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Koegel AA, Mozur EM, Oswald IWH, Jalarvo NH, Prisk TR, Tyagi M, Neilson JR. J Am Chem Soc, 2022, 144: 1313–1322

    Article  CAS  PubMed  Google Scholar 

  135. Guo S, Zhao Y, Bu K, Fu Y, Luo H, Chen M, Hautzinger MP, Wang Y, Jin S, Yang W, Lü X. Angew Chem Int Ed, 2020, 59: 17533–17539

    Article  CAS  Google Scholar 

  136. Yangui A, Garrot D, Lauret JS, Lusson A, Bouchez G, Deleporte E, Pillet S, Bendeif EE, Castro M, Triki S, Abid Y, Boukheddaden K. J Phys Chem C, 2015, 119: 23638–23647

    Article  CAS  Google Scholar 

  137. Kahmann S, Tekelenburg EK, Duim H, Kamminga ME, Loi MA. Nat Commun, 2020, 11: 2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Straus DB, Hurtado Parra S, Iotov N, Gebhardt J, Rappe AM, Subotnik JE, Kikkawa JM, Kagan CR. J Am Chem Soc, 2016, 138: 13798–13801

    Article  CAS  PubMed  Google Scholar 

  139. Urban JM, Chehade G, Dyksik M, Menahem M, Surrente A, Trippé-Allard G, Maude DK, Garrot D, Yaffe O, Deleporte E, Plochocka P, Baranowski M. J Phys Chem Lett, 2020, 11: 5830–5835

    Article  CAS  PubMed  Google Scholar 

  140. Straus DB, Parra SH, Iotov N, Zhao Q, Gau MR, Carroll PJ, Kikkawa JM, Kagan CR. ACS Nano, 2020, 14: 3621–3629

    Article  CAS  PubMed  Google Scholar 

  141. Neutzner S, Thouin F, Cortecchia D, Petrozza A, Silva C, Srimath Kandada AR. Phys Rev Mater, 2018, 2: 64605

    Article  CAS  Google Scholar 

  142. Straus DB, Kagan CR. Annu Rev Phys Chem, 2022, 73: 403–428

    Article  PubMed  Google Scholar 

  143. Iaru CM, Geuchies JJ, Koenraad PM, Vanmaekelbergh D, Silov AY. ACS Nano, 2017, 11: 11024–11030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fang H-, Yang J, Adjokatse S, Tekelenburg E, Kamminga ME, Duim H, Ye J, Blake GR, Even J, Loi MA. Adv Funct Mater, 2020, 30: 1907979

    Article  CAS  Google Scholar 

  145. Kaiser M, Li Y, Schwenzer J, Jakoby M, Allegro I, Gerhard M, Koch M, Ducinskas A, Richards BS, Graetzel M, Milić JV, Paetzold UW, Howard IA. J Appl Phys, 2021, 129: 123101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22271006). Y. F. thanks Peking University and Beijing National Laboratory for Molecular Sciences for startup funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Fu.

Ethics declarations

Conflict of interest The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y. The chemistry and physics of organic—inorganic hybrid perovskite quantum wells. Sci. China Chem. 65, 2058–2076 (2022). https://doi.org/10.1007/s11426-022-1389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1389-6

Keywords

Navigation