Skip to main content
Log in

Specific cross-dimerization of terminal alkynes via Pd/TMEDA catalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The cross-dimerization of terminal alkynes is the most straightforward and attractive approach to differently substituted 1,3-enynes, which are vital structural motifs in natural products, biologically active compounds, and organic functional materials, etc. However, due to the inherent issues of the stereo-, regio-, and chemoselectivity, the strategy is less explored and remains problematic in substrate scope, selectivity, and screening of catalytic system, etc. Herein, a specific cross-dimerization of terminal alkynes is developed under Pd/TMEDA catalysis, which produces a series of gem-1,3-enynes (58 examples) in totally moderate to high yields with outstanding functional group tolerance. A cyclopalladium compound might be the key imtermediate, which performs anti-addition-carbometallation, and leads to the exclusive cross-selectivity. The unprecedented features of the reaction, such as anti-addition-carbometallation, easy control of selectivity, wide range of the donor alkynes, and very simple catalytic conditions, allow it not only a facile and functionally diverse synthesis of 1,3-enynes, but also a substantial progress for the textbook reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected examples: (a) Rudi A, Schleyer M, Kashman Y. J Nat Prod, 2000, 63: 1434–1436

    CAS  Google Scholar 

  2. Fontana A, d’Ippolito G, D’Souza L, Mollo E, Parameswaram PS, Cimino G. J Nat Prod, 2001, 64: 131–133

    CAS  Google Scholar 

  3. Lechner D, Stavri M, Oluwatuyi M, Pereda-Miranda R, Gibbons S. Phytochemistry, 2004, 65: 331–335

    CAS  Google Scholar 

  4. Fürstner A, Turet L. Angew Chem Int Ed, 2005, 44: 3462–3466

    Google Scholar 

  5. Liu Y, Nishiura M, Wang Y, Hou Z. J Am Chem Soc, 2006, 128: 5592–5593

    CAS  Google Scholar 

  6. Cao Z, Ren T. Organometallics, 2011, 30: 245–250

    CAS  Google Scholar 

  7. For selected reviews: (a) Saito S, Yamamoto Y. Chem Rev, 2000, 100: 2901–2916

    CAS  Google Scholar 

  8. Negishi E, Anastasia L. Chem Rev, 2003, 103: 1979–2018

    CAS  Google Scholar 

  9. Wessig P, Müller G. Chem Rev, 2008, 108: 2051–2063

    CAS  Google Scholar 

  10. Chinchilla R, Nájera C. Chem Rev, 2014, 114: 1783–1826

    CAS  Google Scholar 

  11. Trost BM, Li CJ. Modern Alkyne Chemistry. Weinheim: VCH, 2015

    Google Scholar 

  12. Stang PJ, Diederich F. Modern Acetylene Chemistry. Weinheim: VCH, 1995

    Google Scholar 

  13. Akita M, Yasuda H, Nakamura A. BCSJ, 1984, 57: 480–487

    CAS  Google Scholar 

  14. Trost BM, McIntosh MC. Tetrahedron Lett, 1997, 38: 3207–3210

    CAS  Google Scholar 

  15. For examples of Z-selective cross-dimerization of alkynes: (a) Katayama H, Yari H, Tanaka M, Ozawa F. Chem Commun, 2005: 4336–4338

  16. Rivada-Wheelaghan O, Chakraborty S, Shimon LJW, Ben-David Y, Milstein D. Angew Chem Int Ed, 2016, 55: 6942–6945

    CAS  Google Scholar 

  17. For examples of E-selective cross-dimerization of alkynes: (a) Katagiri T, Tsurugi H, Satoh T, Miura M. Chem Commun, 2008, 3405–3407

  18. Ogata K, Oka O, Toyota A, Suzuki N, Fukuzawa S. Synlett, 2008: 2663–2666

  19. Lauer MG, Headford BR, Gobble OM, Weyhaupt MB, Gerlach DL, Zeller M, Shaughnessy KH. ACS Catal, 2016, 6: 5834–5842

    CAS  Google Scholar 

  20. Grenier-Petel JC, Collins SK. ACS Catal, 2019, 9: 3213–3218

    CAS  Google Scholar 

  21. Ueda Y, Tsurugi H, Mashima K. Angew Chem Int Ed, 2020, 59: 1552–1556

    CAS  Google Scholar 

  22. For examples of gem-selective cross-dimerization of alkynes: (a) Sabourin ET. J Mol Catal, 1984}, 26}: 363–

    CAS  Google Scholar 

  23. Xu HD, Zhang RW, Li X, Huang S, Tang W, Hu WH. Org Lett, 2013, 15: 840–843

    CAS  Google Scholar 

  24. Azpíroz R, Rubio-Pérez L, Castarlenas R, Pérez-Torrente JJ, Oro LA. ChemCatChem, 2014, 6: 2587–2592

    Google Scholar 

  25. Oshovsky GV, Hessen B, Reek JNH, Bruin B. Organometallics, 2011, 30: 6067–6070

    CAS  Google Scholar 

  26. Tsukada N, Ninomiya S, Aoyama Y, Inoue Y. Org Lett, 2007, 9: 2919–2921

    CAS  Google Scholar 

  27. Chen JF, Li C. ACS Catal, 2020, 10: 3881–3889

    CAS  Google Scholar 

  28. For selected examples for the synthesis of 1,3-enynes by Wittig olefination of propargyl aldehyde: (a) Haubenreisser S, Hensenne P, Schröder S, Niggemann M. Org Lett, 2013, 15: 2262–2265

    CAS  Google Scholar 

  29. Gao Z, Fletcher SP. Chem Commun, 2018, 54: 3601–3604

    CAS  Google Scholar 

  30. Hata T, Iwata S, Seto S, Urabe H. Adv Synth Catal, 2012, 354: 1885–1889

    CAS  Google Scholar 

  31. Deussen HJ, Jeppesen L, Schärer N, Junager F, Bentzen B, Weber B, Weil V, Mozer SJ, Sauerberg P. Org Process Res Dev, 2004, 8: 363–371

    CAS  Google Scholar 

  32. For selected examples for the synthesis of 1,3-enynes by dehydration of propargyl alcohols: (a) Yan W, Ye X, Akhmedov NG, Petersen JL, Shi X. Org Lett, 2012, 14: 2358–2361

    CAS  Google Scholar 

  33. Ye C, Qian B, Li Y, Su M, Li D, Bao H. Org Lett, 2018, 20: 3202–3205

    CAS  Google Scholar 

  34. For selected examples for the synthesis of 1,3-enynes by metal-catalyzed cross-coupling between alkynes and alkenes: (a) Ahammed S, Kundu D, Ranu BC. J Org Chem, 2014, 79: 7391–7398

    CAS  Google Scholar 

  35. Cornelissen L, Lefrancq M, Riant O. Org Lett, 2014, 16: 3024–3027

    CAS  Google Scholar 

  36. Doucet H, Hierso JC. Angew Chem Int Ed, 2007, 46: 834–871

    CAS  Google Scholar 

  37. Saha D, Chatterjee T, Mukherjee M, Ranu BC. J Org Chem, 2012, 77: 9379–9383

    CAS  Google Scholar 

  38. For selected examples of other methods for the synthesis of the 1,3-enynes: (a) Zhou Y, Ye F, Zhou Q, Zhang Y, Wang J. Org Lett, 2016, 18: 2024–2027

    CAS  Google Scholar 

  39. Han S, Kim HS, Zhang M, Xia Y, Lee S. Org Lett, 2019, 21: 5426–5431

    CAS  Google Scholar 

  40. Pradhan TR, Kim HW, Park JK. Angew Chem Int Ed, 2018, 57: 9930–9935

    CAS  Google Scholar 

  41. Jeon H, Ko SB, Lee S. Org Chem Front, 2020, 7: 3918–3925

    CAS  Google Scholar 

  42. Su L, Ren T, Dong J, Liu L, Xie S, Yuan L, Zhou Y, Yin SF. J Am Chem Soc, 2019, 141: 2535–2544

    CAS  Google Scholar 

  43. Su L, Dong J, Liu L, Sun M, Qiu R, Zhou Y, Yin SF. J Am Chem Soc, 2016, 138: 12348–12351

    CAS  Google Scholar 

  44. Shang Q, Tang H, Liu Y, Yin MM, Su L, Xie S, Liu L, Yang W, Chen Y, Dong J, Zhou Y, Yin SF. Chem Sci, 2022, 13: 263–273

    CAS  Google Scholar 

  45. For selected examples: (a) Trost BM, Chan C, Ruhter G. J Am Chem Soc, 1987, 109: 3486–3487

    CAS  Google Scholar 

  46. Trost BM, Sorum MT, Chan C, Rühter G. J Am Chem Soc, 1997, 119: 698–708

    CAS  Google Scholar 

  47. Trost BM, Taft BR, Masters JT, Lumb JP. J Am Chem Soc, 2011, 133: 8502–8505

    CAS  Google Scholar 

  48. For selected examples of protonolysis of alkenyl C−Pd bonds, see: (a) O’Duill ML, Engle KM. Synthesis, 2018, 50: 4699–4714

    Google Scholar 

  49. Derosa J, Cantu AL, Boulous MN, O’Duill ML, Turnbull JL, Liu Z, De La Torre DM, Engle KM. J Am Chem Soc, 2017, 139: 5183–5193

    CAS  Google Scholar 

  50. The carbometallation is the primary kinetic process in the dimerization of alkynes, which is the rate- or turnover-limiting step See: (a) Liang Q, Osten KM, Song D. Angew Chem Int Ed, 2017, 56: 6317–6320

    CAS  Google Scholar 

  51. Liang Q, Sheng K, Salmon A, Zhou VY, Song D. ACS Catal, 2018, 9: 810–818

    Google Scholar 

  52. Simmons EM, Hartwig JF. Angew Chem Int Ed, 2012, 51: 3066–3072

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21878072, 21706058, 22102062, 21725602), the Hunan Provincial Natural Science Foundation of China (2020JJ2011) and the China Postdoctoral Science Foundation (2019M662774).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyu Dong or Yongbo Zhou.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Dong, J., Fu, Z. et al. Specific cross-dimerization of terminal alkynes via Pd/TMEDA catalysis. Sci. China Chem. 65, 2487–2493 (2022). https://doi.org/10.1007/s11426-022-1388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1388-5

Keywords

Navigation