Skip to main content
Log in

π-Stacked host materials based on spirofluorene scaffolds for warm white OLEDs achieving 94.7 lm W−1 at 1,000 cd m−2

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Power efficiency (PE) at high brightness is considered as the rigorous standard of high-quality white organic light-emitting diodes (WOLEDs), for which the host material plays a significant role in energy conservation for practical lighting applications. Herein, PE is successfully enhanced to a new level through the method of π-stacked host molecular with spirofluorene scaffold. We design host materials by confining two donor units in a very short distance to enlarge the π-electron spatial delocalization for facilitating the hole hopping process and engaging a rigid donor as the space-lock to suppress the quenching effect as well as induce host bipolar property. Based on this unique molecular design, the red, green, and blue (RGB) monochromic organic light-emitting diodes (OLEDs) demonstrate high external quantum efficiencies (EQEs) of 28.4%, 26.0%, and 31.2% with ultralow roll-off, respectively. More encouragingly, the warm WOLEDs achieve record-high current efficiency (CE) of 109.5 cd A−1, PE of 109.1 lm W−1, and EQE of 32.9%. Even under operating brightness of 1,000 cd m−2, the devices can still realize 94.7 lm W−1 of PE, which represents the highest applicable PE value in the reported WOLEDs and for the first time single host based WOLEDs with a performance exceeding that of a conventional fluorescent tube (70 lm W−1) without any light extraction technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutherland BR. Joule, 2019, 3: 639–640

    Article  Google Scholar 

  2. Tang CW, VanSlyke. Appl Phys Lett, 1987, 51: 913–915

    Article  CAS  Google Scholar 

  3. Kido J, Kimura M, Nagai K. Science, 1995, 267: 1332–1334

    Article  CAS  PubMed  Google Scholar 

  4. D’Andrade BW, Forrest SR. Adv Mater, 2004, 16: 1585–1595

    Article  Google Scholar 

  5. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. Nature, 2009, 459: 234–238

    Article  CAS  PubMed  Google Scholar 

  6. Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR. Nature, 2006, 440: 908–912

    Article  CAS  PubMed  Google Scholar 

  7. Zhang T, He SJ, Wang DK, Jiang N, Lu ZH. Sci Rep, 2016, 6: 20517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu Z, Ma D. Mater Sci Eng-R-Rep, 2016, 107: 1–42

    Article  Google Scholar 

  9. Gather MC, Köhnen A, Meerholz K. Adv Mater, 2011, 23: 233–248

    Article  CAS  PubMed  Google Scholar 

  10. Zhang C, Zhang D, Bin Z, Liu Z, Zhang Y, Lee H, Kwon JH, Duan L. Adv Mater, 2022, 34: 2103102

    Article  CAS  Google Scholar 

  11. Sarma M, Chen LM, Chen YS, Wong KT. Mater Sci Eng-R-Rep, 2022, 150: 100689

    Article  Google Scholar 

  12. Ma P, Du R, Duan C, Zhang J, Han C, Xu H. Chem Eng J, 2022, 429: 132320

    Article  CAS  Google Scholar 

  13. Chen H, Liu H, Shen P, Zeng J, Jiang R, Fu Y, Zhao Z, Tang BZ. Adv Opt Mater, 2021, 9: 2002019

    Article  CAS  Google Scholar 

  14. Liu H, Chen J, Fu Y, Zhao Z, Tang BZ. Adv Funct Mater, 2021, 31: 2103273

    Article  CAS  Google Scholar 

  15. Ding D, Wang Z, Li C, Zhang J, Duan C, Wei Y, Xu H. Adv Mater, 2020, 32: 1906950

    Article  CAS  Google Scholar 

  16. Wang Z, Li XL, Ma Z, Cai X, Cai C, Su SJ. Adv Funct Mater, 2018, 28: 1706922

    Article  Google Scholar 

  17. Lv X, Zhang W, Ding D, Han C, Huang Z, Xiang S, Zhang Q, Xu H, Wang L. Adv Opt Mater, 2018, 6: 1800165

    Article  Google Scholar 

  18. Wu Z, Yu L, Zhao F, Qiao X, Chen J, Ni F, Yang C, Ahamad T, Alshehri SM, Ma D. Adv Opt Mater, 2017, 5: 1700415

    Article  Google Scholar 

  19. Tang X, Li Y, Qu Y, Peng C, Khan A, Jiang Z, Liao L. Adv Funct Mater, 2020, 30: 1910633

    Article  CAS  Google Scholar 

  20. Liu B, Li XL, Tao H, Zou J, Xu M, Wang L, Peng J, Cao Y. J Mater Chem C, 2017, 5: 7668–7683

    Article  CAS  Google Scholar 

  21. Coburn C, Jeong C, Forrest SR. ACS Photon, 2018, 5: 630–635

    Article  CAS  Google Scholar 

  22. Li J, Ding D, Tao Y, Wei Y, Chen R, Xie L, Huang W, Xu H. Adv Mater, 2016, 28: 3122–3130

    Article  CAS  PubMed  Google Scholar 

  23. Zhou G, Wong WY, Suo S. J Photochem Photobiol C-Photochem Rev, 2010, 11: 133–156

    Article  CAS  Google Scholar 

  24. Song W, Lee JY. J Phys D-Appl Phys, 2015, 48: 365106

    Article  Google Scholar 

  25. Schwartz G, Pfeiffer M, Reineke S, Walzer K, Leo K. Adv Mater, 2007, 19: 3672–3676

    Article  CAS  Google Scholar 

  26. Wang J, Chen J, Qiao X, Alshehri SM, Ahamad T, Ma D. ACS Appl Mater Interfaces, 2016, 8: 10093–10097

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Han C, Du F, Duan C, Wei Y, Xu H. Adv Funct Mater, 2020, 30: 2005165

    Article  CAS  Google Scholar 

  28. Liang Q, Han C, Duan C, Xu H. Adv Opt Mater, 2018, 6: 1800020

    Article  Google Scholar 

  29. Liang J, Li C, Zhuang X, Ye K, Liu Y, Wang Y. Adv Funct Mater, 2018, 28: 1707002

    Article  Google Scholar 

  30. Zhang C, Lu Y, Liu Z, Zhang Y, Wang X, Zhang D, Duan L. Adv Mater, 2020, 32: 2004040

    Article  CAS  Google Scholar 

  31. Wu SF, Li SH, Wang YK, Huang CC, Sun Q, Liang JJ, Liao LS, Fung MK. Adv Funct Mater, 2017, 27: 1701314

    Article  Google Scholar 

  32. Liu XK, Chen Z, Qing J, Zhang WJ, Wu B, Tam HL, Zhu F, Zhang XH, Lee CS. Adv Mater, 2015, 27: 7079–7085

    Article  CAS  PubMed  Google Scholar 

  33. Su SJ, Gonmori E, Sasabe H, Kido J. Adv Mater, 2008, 20: 4189–4194

    CAS  Google Scholar 

  34. Burlingame Q, Coburn C, Che X, Panda A, Qu Y, Forrest SR. Nature, 2018, 554: 77–80

    Article  CAS  PubMed  Google Scholar 

  35. Symalla F, Friederich P, Massé A, Meded V, Coehoorn R, Bobbert P, Wenzel W. Phys Rev Lett, 2016, 117: 276803

    Article  PubMed  Google Scholar 

  36. Kim Y, Han T, Lee C, Kim Y, Yang Y, Lee T. Adv Funct Mater, 2020, 30: 2005292

    Article  CAS  Google Scholar 

  37. Tao Y, Yang C, Qin J. Chem Soc Rev, 2011, 40: 2943–2970

    Article  CAS  PubMed  Google Scholar 

  38. Yang SY, Qu YK, Liao LS, Jiang ZQ, Lee ST. Adv Mater, 2022, 34: 2104125

    Article  CAS  Google Scholar 

  39. Qu YK, Zheng Q, Fan J, Liao LS, Jiang ZQ. Acc Mater Res, 2021, 2: 1261–1271

    Article  CAS  Google Scholar 

  40. Sicard LJ, Li HC, Wang Q, Liu XY, Jeannin O, Rault-Berthelot J, Liao LS, Jiang ZQ, Poriel C. Angew Chem Int Ed, 2019, 58: 3848–3853

    Article  CAS  Google Scholar 

  41. Wang Q, Lucas F, Quinton C, Qu YK, Rault-Berthelot J, Jeannin O, Yang SY, Kong FC, Kumar S, Liao LS, Poriel C, Jiang ZQ. Chem Sci, 2020, 11: 4887–4894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo Y, Liu Z, Yang G, Wang T, Bin Z, Lan J, Wu D, You J. Angew Chem Int Ed, 2021, 60: 18852–18859

    Article  CAS  Google Scholar 

  43. Qu YK, Zhou DY, Kong FC, Zheng Q, Tang X, Zhu YH, Huang CC, Feng ZQ, Fan J, Adachi C, Liao LS, Jiang ZQ. Angew Chem Int Ed, 2022, 61: e202201886

    CAS  Google Scholar 

  44. Shen P, Liu H, Zhuang Z, Zeng J, Zhao Z, Tang BZ. Adv Sci, 2022, 9: 2200374

    Article  CAS  Google Scholar 

  45. Yang C. Sci China Chem, 2021, 64: 165–166

    Article  CAS  Google Scholar 

  46. Yang SY, Wang YK, Peng CC, Wu ZG, Yuan S, Yu YJ, Li H, Wang TT, Li HC, Zheng YX, Jiang ZQ, Liao LS. J Am Chem Soc, 2020, 142: 17756–17765

    Article  CAS  PubMed  Google Scholar 

  47. Yang SY, Feng ZQ, Fu Z, Zhang K, Chen S, Yu YJ, Zou B, Wang K, Liao LS, Jiang ZQ. Angew Chem Int Ed, 2022, 61: e202206861

    CAS  Google Scholar 

  48. Tang X, Cui LS, Li HC, Gillett AJ, Auras F, Qu YK, Zhong C, Jones STE, Jiang ZQ, Friend RH, Liao LS. Nat Mater, 2020, 19: 1332–1338

    Article  CAS  PubMed  Google Scholar 

  49. Gu C, Hosono N, Zheng JJ, Sato Y, Kusaka S, Sakaki S, Kitagawa S. Science, 2019, 363: 387–391

    Article  CAS  PubMed  Google Scholar 

  50. Obolda A, Peng Q, He C, Zhang T, Ren J, Ma H, Shuai Z, Li F. Adv Mater, 2016, 28: 4740–4746

    Article  CAS  PubMed  Google Scholar 

  51. Han C, Zhu L, Li J, Zhao F, Zhang Z, Xu H, Deng Z, Ma D, Yan P. Adv Mater, 2014, 26: 7070–7077

    Article  CAS  PubMed  Google Scholar 

  52. Poriel C, Rault-Berthelot J. Adv Funct Mater, 2021, 31: 2010547

    Article  CAS  Google Scholar 

  53. Poriel C, Rault-Berthelot J. Acc Mater Res, 2022, 3: 379–390

    Article  CAS  Google Scholar 

  54. Yang X, Zhou G, Wong WY. Chem Soc Rev, 2015, 44: 8484–8575

    Article  CAS  PubMed  Google Scholar 

  55. Kong FC, Zhang YL, Quinton C, McIntosh N, Yang SY, Rault-Berthelot J, Lucas F, Brouillac C, Jeannin O, Cornil J, Jiang ZQ, Liao LS, Poriel C. Angew Chem Int Ed, 2022, 61: e202207204

    CAS  Google Scholar 

  56. Cui LS, Xie YM, Wang YK, Zhong C, Deng YL, Liu XY, Jiang ZQ, Liao LS. Adv Mater, 2015, 27: 4213–4217

    Article  CAS  PubMed  Google Scholar 

  57. Han C, Xie G, Xu H, Zhang Z, Xie L, Zhao Y, Liu S, Huang W. Adv Mater, 2011, 23: 2491–2496

    Article  CAS  PubMed  Google Scholar 

  58. Zhang D, Cai M, Zhang Y, Zhang D, Duan L. ACS Appl Mater Interfaces, 2015, 7: 28693–28700

    Article  CAS  PubMed  Google Scholar 

  59. Tian QS, Zhang L, Hu Y, Yuan S, Wang Q, Liao LS. ACS Appl Mater Interfaces, 2018, 10: 39116–39123

    Article  CAS  PubMed  Google Scholar 

  60. Tang X, Liu XY, Yuan Y, Wang YJ, Li HC, Jiang ZQ, Liao LS. ACS Appl Mater Interfaces, 2018, 10: 29840–29847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51873139, 61961160731, 62175171, 22175124), the Natural Science Foundation of Jiangsu Province of China (BK20220057), and the Suzhou Science and Technology Plan Project (SYG202010). This work was also supported by Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang-Sheng Liao or Zuo-Quan Jiang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YL., Yang, SY., Feng, ZQ. et al. π-Stacked host materials based on spirofluorene scaffolds for warm white OLEDs achieving 94.7 lm W−1 at 1,000 cd m−2. Sci. China Chem. 65, 2219–2230 (2022). https://doi.org/10.1007/s11426-022-1382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1382-5

Keywords

Navigation