Skip to main content
Log in

Impeded degradation of perovskite solar cells via the dual interfacial modification of siloxane

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is challenging to improve the long-term stability of perovskite solar cells (PSCs) without sacrificing efficiency. The perovskite absorbers degrade from the film surface/interfaces, which follows entangled mechanisms that have not been fully revealed yet. Herein, we decouple and elaborate two distinctive pathways regarding film degradation based on FACsPbI3 perovskites. Moreover, a dual interfacial modification strategy has been developed for improving the material’s intrinsic stability, thus leading to the film degrading in a more retardant pathway. The corresponding PSCs achieve a stable power output efficiency of 23.75%. More importantly, the unencapsulated PSCs devices retain over 93% of their initial PCE after the maximum power point (MPP) tracking under the continuous 1-sun illumination and show significantly improved stability after aged under the thermal treatment or stored in ambient atmosphere for over 1500 hours without obvious PCE decay. This work shows the importance of modulating the degradation pathway on stability improvement, and at the same time, proposes a strategy for designing perovskite-based optoelectronics with excellent performance and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kazmerski L, Best research cell efficiencies chart. National Renewable Energy Laboratory (NREL) 2012

  2. Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546

    Article  CAS  PubMed  Google Scholar 

  3. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    Article  CAS  PubMed  Google Scholar 

  5. Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi HW, Lee J, Bae JH, Kwak SK, Kim DS, Yang C. Science, 2020, 369: 1615–1620

    Article  CAS  PubMed  Google Scholar 

  6. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photonics, 2019, 13: 460–466

    Article  CAS  Google Scholar 

  7. Meng L, You J, Yang Y. Nat Commun, 2018, 9: 5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang S, Wang Y, Liu P, Cheng YB, Zhao HJ, Yang HG. Nat Energy, 2016, 1: 15016

    Article  CAS  Google Scholar 

  9. Grätzel M. Nat Mater, 2014, 13: 838–842

    Article  PubMed  Google Scholar 

  10. Chang NL, Ho-Baillie AWY, Basore PA, Young TL, Evans R, Egan RJ. Prog Photovolt-Res Appl, 2017, 25: 390–405

    Article  Google Scholar 

  11. Haruyama J, Sodeyama K, Han L, Tateyama Y. J Am Chem Soc, 2015, 137: 10048–10051

    Article  CAS  PubMed  Google Scholar 

  12. Whitfield PS, Herron N, Guise WE, Page K, Cheng YQ, Milas I, Crawford MK. Sci Rep, 2016, 6: 35685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JW, Seol DJ, Cho AN, Park NG. Adv Mater, 2014, 26: 4991–4998

    Article  CAS  PubMed  Google Scholar 

  14. Pellet N, Gao P, Gregori G, Yang TY, Nazeeruddin MK, Maier J, Grätzel M. Angew Chem, 2014, 126: 3215–3221

    Article  Google Scholar 

  15. Rühle S. Sol Energy, 2016, 130: 139–147

    Article  Google Scholar 

  16. Nie W, Blancon JC, Neukirch AJ, Appavoo K, Tsai H, Chhowalla M, Alam MA, Sfeir MY, Katan C, Even J, Tretiak S, Crochet JJ, Gupta G, Mohite AD. Nat Commun, 2016, 7: 11574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ. Adv Energy Mater, 2015, 5: 1500963

    Article  Google Scholar 

  18. Christians JA, Schulz P, Tinkham JS, Schloemer TH, Harvey SP, Tremolet de Villers BJ, Sellinger A, Berry JJ, Luther JM. Nat Energy, 2018, 3: 68–74

    Article  CAS  Google Scholar 

  19. Chen T, Foley BJ, Park C, Brown CM, Harriger LW, Lee J, Ruff J, Yoon M, Choi JJ, Lee SH. Sci Adv, 2016, 2: e1601650

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zheng X, Wu C, Jha SK, Li Z, Zhu K, Priya S. ACS Energy Lett, 2016, 1: 1014–1020

    Article  CAS  Google Scholar 

  21. Shi L, Bucknall MP, Young TL, Zhang M, Hu L, Bing J, Lee DS, Kim J, Wu T, Takamure N, McKenzie DR, Huang S, Green MA, Ho-Baillie AWY. Science, 2020, 368: eaba2412

    Article  CAS  PubMed  Google Scholar 

  22. Huang J, Tan S, Lund PD, Zhou H. Energy Environ Sci, 2017, 10: 2284–2311

    Article  Google Scholar 

  23. Boyd CC, Cheacharoen R, Leijtens T, McGehee MD. Chem Rev, 2019, 119: 3418–3451

    Article  CAS  PubMed  Google Scholar 

  24. Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Grätzel M. Energy Environ Sci, 2016, 9: 1989–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park NG. Adv Energy Mater, 2015, 5: 1501310

    Article  Google Scholar 

  26. Chen Y, Yang Z, Jia X, Wu Y, Yuan N, Ding J, Zhang WH, Liu SF. Nano Energy, 2019, 61: 148–157

    Article  CAS  Google Scholar 

  27. Beal RE, Hagström NZ, Barrier J, Gold-Parker A, Prasanna R, Bush KA, Passarello D, Schelhas LT, Brüning K, Tassone CJ, Steinrück HG, McGehee MD, Toney MF, Nogueira AF. Matter, 2020, 2: 207–219

    Article  Google Scholar 

  28. Zuo L, Guo H, deQuilettes DW, Jariwala S, De Marco N, Dong S, DeBlock R, Ginger DS, Dunn B, Wang M, Yang Y. Sci Adv, 2017, 3: e1700106

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng J, Khan JI, Liu W, Ugur E, Duong T, Wu Y, Shen H, Wang K, Dang H, Aydin E, Yang X, Wan Y, Weber KJ, Catchpole KR, Laquai F, Wolf S, White TP. Adv Energy Mater, 2018, 8: 1801208

    Article  Google Scholar 

  30. Mahmud MA, Duong T, Yin Y, Pham HT, Walter D, Peng J, Wu Y, Li L, Shen H, Wu N, Mozaffari N, Andersson G, Catchpole KR, Weber KJ, White TP. Adv Funct Mater, 2020, 30: 1907962

    Article  CAS  Google Scholar 

  31. Yoo JJ, Wieghold S, Sponseller MC, Chua MR, Bertram SN, Hartono NTP, Tresback JS, Hansen EC, Correa-Baena JP, Bulović V, Buonassisi T, Shin SS, Bawendi MG. Energy Environ Sci, 2019, 12: 2192–2199

    Article  CAS  Google Scholar 

  32. Liu Y, Akin S, Hinderhofer A, Eickemeyer FT, Zhu H, Seo JY, Zhang J, Schreiber F, Zhang H, Zakeeruddin SM, Hagfeldt A, Dar MI, Grätzel M. Angew Chem Int Ed, 2020, 59: 15688–15694

    Article  CAS  Google Scholar 

  33. Fan Z, Xiao H, Wang Y, Zhao Z, Lin Z, Cheng HC, Lee SJ, Wang G, Feng Z, Goddard III WA, Huang Y, Duan X. Joule, 2017, 1: 548–562

    Article  CAS  Google Scholar 

  34. Yun JS, Kim J, Young T, Patterson RJ, Kim D, Seidel J, Lim S, Green MA, Huang S, Ho-Baillie A. Adv Funct Mater, 2018, 28: 1705363

    Article  Google Scholar 

  35. Lee JW, Dai Z, Han TH, Choi C, Chang SY, Lee SJ, De Marco N, Zhao H, Sun P, Huang Y, Yang Y. Nat Commun, 2018, 9: 3021

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shao Z, Meng H, Du X, Sun X, Lv P, Gao C, Rao Y, Chen C, Li Z, Wang X, Cui G, Pang S. Adv Mater, 2020, 32: 2001054

    Article  CAS  Google Scholar 

  37. Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G. J Mater Chem A, 2017, 5: 1658–1666

    Article  CAS  Google Scholar 

  38. Lee H, Kim M, Lee H. Catalysts, 2021, 11: 61

    Article  CAS  Google Scholar 

  39. Xu K, Vickers ET, Rao L, Lindley SA, Allen ALC, Luo B, Li X, Zhang JZ. Chem Eur J, 2019, 25: 5014–5021

    Article  CAS  PubMed  Google Scholar 

  40. Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. J Am Chem Soc, 2015, 137: 1790–1793

    Article  CAS  PubMed  Google Scholar 

  41. Kaya H, Ngo D, Gin S, Kim SH. J Non-Crystalline Solids, 2020, 527: 119722

    Article  CAS  Google Scholar 

  42. Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, La Magna A, Alberti A. Phys Chem Chem Phys, 2016, 18: 13413–13422

    Article  CAS  PubMed  Google Scholar 

  43. Wu T, Wang Y, Li X, Wu Y, Meng X, Cui D, Yang X, Han L. Adv Energy Mater, 2019, 9: 1803766

    Article  Google Scholar 

  44. Li W, Qian X, Li J. Nat Rev Mater, 2021, 6: 829–846

    Article  CAS  Google Scholar 

  45. Vestergaard CL, Mikkelsen MB, Reisner W, Kristensen A, Flyvbjerg H. Nat Commun, 2016, 7: 10227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104

    Article  PubMed  Google Scholar 

  47. Grimme S, Ehrlich S, Goerigk L. J Comput Chem, 2011, 32: 1456–1465

    Article  CAS  PubMed  Google Scholar 

  48. Caspersen KJ, Carter EA. Proc Natl Acad Sci USA, 2005, 102: 6738–6743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G. J Chem Phys, 2012, 136: 074103

    Article  PubMed  Google Scholar 

  50. Mączka M, Ptak M, Vasconcelos DLM, Giriunas L, Freire PTC, Bertmer M, Banys J, Simenas M. J Phys Chem C, 2020, 124: 26999–27008

    Article  Google Scholar 

  51. Deringer VL, Tchougréeff AL, Dronskowski R. J Phys Chem A, 2011, 115: 5461–5466

    Article  CAS  PubMed  Google Scholar 

  52. Dronskowski R, Bloechl PE. J Phys Chem, 1993, 97: 8617–8624

    Article  CAS  Google Scholar 

  53. Khenkin MV, Katz EA, Abate A, Bardizza G, Berry JJ, Brabec C, Brunetti F, Bulović V, Burlingame Q, Di Carlo A, Cheacharoen R, Cheng YB, Colsmann A, Cros S, Domanski K, Dusza M, Fell CJ, Forrest SR, Galagan Y, Di Girolamo D, Grätzel M, Hagfeldt A, von Hauff E, Hoppe H, Kettle J, Köbler H, Leite MS, Liu S, Loo YL, Luther JM, Ma CQ, Madsen M, Manceau M, Matheron M, McGehee M, Meitzner R, Nazeeruddin MK, Nogueira AF, Odabaşı Ç, Osherov A, Park NG, Reese MO, De Rossi F, Saliba M, Schubert US, Snaith HJ, Stranks SD, Tress W, Troshin PA, Turkovic V, Veenstra S, Visoly-Fisher I, Walsh A, Watson T, Xie H, Yıldırım R, Zakeeruddin SM, Zhu K, Lira-Cantu M. Nat Energy, 2020, 5: 35–49

    Article  Google Scholar 

  54. Tiihonen A, Miettunen K, Halme J, Lepikko S, Poskela A, Lund PD. Energy Environ Sci, 2018, 11: 730–738

    Article  CAS  Google Scholar 

  55. Wang T, Wei X, Zong Y, Zhang S, Guan W. J Mater Chem C, 2020, 8: 12196–12203

    Article  Google Scholar 

  56. Liu L, Xu K, Allen AL, Li X, Xia H, Peng L, Zhang JZ. J Phys Chem C, 2021, 125: 2793–2801

    Article  CAS  Google Scholar 

  57. Michelson CE, Gelatos AV, Cohen JD. Appl Phys Lett, 1985, 47: 412–414

    Article  CAS  Google Scholar 

  58. Ni Z, Bao C, Liu Y, Jiang Q, Wu WQ, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J. Science, 2020, 367: 1352–1358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work is financially supported by the National Natural Science Foundation of China (21975028, 52172182, 22011540377), and the Beijing Municipal Natural Science Foundation (JQ19008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Bai or Qi Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Cao, C., Bai, Y. et al. Impeded degradation of perovskite solar cells via the dual interfacial modification of siloxane. Sci. China Chem. 65, 2299–2306 (2022). https://doi.org/10.1007/s11426-022-1381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1381-1

Keywords

Navigation