Skip to main content
Log in

Three-dimensional direct-writing via photopolymerization based on triplet—triplet annihilation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

3D direct-writing via photopolymerization based on two-photon absorption (TPA) can achieve excellent out-of-plane resolution. The key to this technology is a quadratic intensity dependence in photoexciting the TPA photosensitizers. Triplet-triplet annihilation (TTA) also has similar nonlinear light-intensity dependence. As a result, TTA can also generate spatially confined excitation near the beam focus. Combining the photopolymerization reaction with the TTA system composed of palladium porphyrin and diphenylanthracene, 3D direct-writing micro-fabrication based on photopolymerization and the TTA was realized. The out-of-plane resolution can reach 10 µm under continuous-wave laser excitation. TTA-based 3D direct-writing technology does not need an expensive femtosecond pulsed laser, showing the potential of a next-generation 3D printing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saha SK, Wang D, Nguyen VH, Chang Y, Oakdale JS, Chen SC. Science, 2019, 366: 105–109

    Article  CAS  PubMed  Google Scholar 

  2. Jonušauskas L, Gailevičius D, Mikoliūnaitė L, Sakalauskas D, Šakirzanovas S, Juodkazis S, Malinauskas M. Materials, 2017, 10: 12

    Article  PubMed  PubMed Central  Google Scholar 

  3. Malinauskas M, Danilevičius P, Juodkazis S. Opt Express, 2011, 19: 5602–5610

    Article  CAS  PubMed  Google Scholar 

  4. Truby RL, Lewis JA. Nature, 2016, 540: 371–378

    Article  CAS  PubMed  Google Scholar 

  5. Desponds A, Banyasz A, Montagnac G, Andraud C, Baldeck P, Parola S. J Sol-Gel Sci Technol, 2020, 95: 733–745

    Article  CAS  Google Scholar 

  6. Kiefer P, Hahn V, Nardi M, Yang L, Blasco E, Barner-Kowollik C, Wegener M. Adv Opt Mater, 2020, 8: 2000895

    Article  CAS  Google Scholar 

  7. Lemma ED, Spagnolo B, De Vittorio M, Pisanello F. Trends Biotechnol, 2019, 37: 358–372

    Article  CAS  PubMed  Google Scholar 

  8. Maruo S, Nakamura O, Kawata S. Opt Lett, 1997, 22: 132–134

    Article  CAS  PubMed  Google Scholar 

  9. Fischer J, Wegener M. Laser Photonics Rev, 2013, 7: 22–44

    Article  CAS  Google Scholar 

  10. Kawata S, Sun HB, Tanaka T, Takada K. Nature, 2001, 412: 697–698

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Hou Y, Huo Z, Liu Q, Xu W, Zhao J. Chem Commun, 2021, 57: 9044–9047

    Article  CAS  Google Scholar 

  12. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu XL, Marder SR, Perry JW. Nature, 1999, 398: 51–54

    Article  CAS  Google Scholar 

  13. Hu P, Qiu W, Naumov S, Scherzer T, Hu Z, Chen Q, Knolle W, Li Z. ChemPhotoChem, 2020, 4: 224–232

    Article  CAS  Google Scholar 

  14. Pawlicki M, Collins HA, Denning RG, Anderson HL. Angew Chem Int Ed, 2009, 48: 3244–3266

    Article  CAS  Google Scholar 

  15. Xing JF, Zheng ML, Chen WQ, Dong XZ, Takeyasu N, Tanaka T, Zhao ZS, Duan XM, Kawata S. Phys Chem Chem Phys, 2012, 14: 15785–15792

    Article  CAS  PubMed  Google Scholar 

  16. Sugioka K. Nanophotonics, 2017, 6: 393–413

    Article  CAS  Google Scholar 

  17. Davis KM, Miura K, Sugimoto N, Hirao K. Opt Lett, 1996, 21: 1729–1731

    Article  CAS  PubMed  Google Scholar 

  18. Awwad N, Bui AT, Danilov EO, Castellano FN. Chem, 2020, 6: 3071–3085

    Article  CAS  Google Scholar 

  19. Limberg DK, Kang JH, Hayward RC. J Am Chem Soc, 2022, 144: 5226–5232

    Article  CAS  PubMed  Google Scholar 

  20. Sanders SN, Schloemer TH, Gangishetty MK, Anderson D, Seitz M, Gallegos AO, Stokes RC, Congreve DN. Nature, 2022, 604: 474–478

    Article  CAS  PubMed  Google Scholar 

  21. Kiseleva N, Filatov MA, Fischer JC, Kaiser M, Jakoby M, Busko D, Howard IA, Richards BS, Turshatov A. Phys Chem Chem Phys, 2022, 24: 3568–3578

    Article  CAS  PubMed  Google Scholar 

  22. Pristash SR, Corp KL, Rabe EJ, Schlenker CW. ACS Appl Energy Mater, 2020, 3: 19–28

    Article  CAS  Google Scholar 

  23. Sittig M, Schmidt B, Görls H, Bocklitz T, Wächtler M, Zechel S, Hager MD, Dietzek B. Phys Chem Chem Phys, 2020, 22: 4072–4079

    Article  CAS  PubMed  Google Scholar 

  24. Vasilev A, Kostadinov A, Kandinska M, Landfester K, Baluschev S. Front Chem, 2022, 10: 809863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baluschev S, Miteva T, Yakutkin V, Nelles G, Yasuda A, Wegner G. Phys Rev Lett, 2006, 97: 143903

    Article  CAS  PubMed  Google Scholar 

  26. Baluschev S, Yakutkin V, Wegner G, Minch B, Miteva T, Nelles G, Yasuda A. J Appl Phys, 2007, 101: 023101

    Article  Google Scholar 

  27. Laquai F, Wegner G, Im C, Büsing A, Heun S. J Chem Phys, 2005, 123: 074902

    Article  PubMed  Google Scholar 

  28. Kim JH, Deng F, Castellano FN, Kim JH. Chem Mater, 2012, 24: 2250–2252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1502500), the National Natural Science Foundation of China (22125502 and 22071207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, Y., Su, Y. et al. Three-dimensional direct-writing via photopolymerization based on triplet—triplet annihilation. Sci. China Chem. 65, 2283–2289 (2022). https://doi.org/10.1007/s11426-022-1380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1380-6

Keywords

Navigation