Skip to main content
Log in

Responsive MXene nanovehicles deliver CRISPR/Cas12a for boolean logic-controlled gene editing

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Programmable and precise regulation of genetic information is crucial in bioengineering and biomedicine; however, it remains challenging to implement this objective. Here we deployed DNA-functionalized MXenes as a smart delivery system for spatiotemporally controllable genome editing. The MXene nanovehicles rationally integrated photothermal effect with nucleic acid strand displacement reaction, thereby allowing for the binary logic gate-controlled release of Cas ribonucleoprotein complexes in response to different input patterns of NIR light and nucleic acids. This system was highly programmable and could be harnessed to construct 2-input (AND, OR, and N-IMPLY) and 3-input (AND/OR and N-IMPLY/OR) logic gates for precise gene editing in mammalian cells. Moreover, an AND logic gate-controlled delivery system achieved selective induction of tumor cell death in a xenograft mice model using tissue-penetrating NIR light and cancer-relevant microRNA as the inputting cues. Therefore, the MXene nanovehicles adopted both the external and endogenous signals as the stimuli to precisely control gene editing under logic computation, presenting a helpful strategy for therapeutic genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang Y, Gao L, Feng W, Guo C, Yang Q, Li F, Le XC. Chem Soc Rev, 2021, 50: 11844–11869

    Article  CAS  PubMed  Google Scholar 

  2. Pickar-Oliver A, Gersbach CA. Nat Rev Mol Cell Biol, 2019, 20: 490–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu G, Lin Q, Jin S, Gao C. Mol Cell, 2022, 82: 333–347

    Article  CAS  PubMed  Google Scholar 

  4. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV. Nat Rev Microbiol, 2020, 18: 67–83

    Article  CAS  PubMed  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. Science, 2012, 337: 816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hsu PD, Lander ES, Zhang F. Cell, 2014, 157: 1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doudna JA. Nature, 2020, 578: 229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai W, Wang M. Sci Bull, 2019, 64: 1841–1849

    Article  CAS  Google Scholar 

  9. Glass Z, Lee M, Li Y, Xu Q. Trends Biotechnol, 2018, 36: 173–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang P, Zhang L, Xie Y, Wang N, Tang R, Zheng W, Jiang X. Adv Sci, 2017, 4: 1700175

    Article  Google Scholar 

  11. Yang X, Tang Q, Jiang Y, Zhang M, Wang M, Mao L. J Am Chem Soc, 2019, 141: 3782–3786

    Article  CAS  PubMed  Google Scholar 

  12. Zhou W, Cui H, Ying L, Yu XF. Angew Chem Int Ed, 2018, 57: 10268–10272

    Article  CAS  Google Scholar 

  13. Li F, Song N, Dong Y, Li S, Li L, Liu Y, Li Z, Yang D. Angew Chem Int Ed, 2022, 61

  14. Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A, Doudna JA. Nat Biotechnol, 2017, 35: 431–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rouet R, Thuma BA, Roy MD, Lintner NG, Rubitski DM, Finley JE, Wisniewska HM, Mendonsa R, Hirsh A, de Oñate L, Compte Barrón J, McLellan TJ, Bellenger J, Feng X, Varghese A, Chrunyk BA, Borzilleri K, Hesp KD, Zhou K, Ma N, Tu M, Dullea R, McClure KF, Wilson RC, Liras S, Mascitti V, Doudna JA. J Am Chem Soc, 2018, 140: 6596–6603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naeem M, Majeed S, Hoque MZ, Ahmad I. Cells, 2020, 9: 1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grünewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK. Nature, 2019, 569: 433–437

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li L, Yang Z, Zhu S, He L, Fan W, Tang W, Zou J, Shen Z, Zhang M, Tang L, Dai Y, Niu G, Hu S, Chen X. Adv Mater, 2019, 31: 1901187

    Article  Google Scholar 

  19. Pan Y, Yang J, Luan X, Liu X, Li X, Yang J, Huang T, Sun L, Wang Y, Lin Y, Song Y. Sci Adv, 2019, 5: eaav7199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lyu Y, He S, Li J, Jiang Y, Sun H, Miao Y, Pu K. Angew Chem Int Ed, 2019, 58: 18197–18201

    Article  CAS  Google Scholar 

  21. Pu Y, Yin H, Dong C, Xiang H, Wu W, Zhou B, Du D, Chen Y, Xu H. Adv Mater, 2021, 33: 2104641

    Article  CAS  Google Scholar 

  22. Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, Siegwart DJ. Nat Mater, 2021, 20: 701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Nat Nanotechnol, 2020, 15: 313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu J, Peng H, Lu X, Lai M, Zhang H, Le XC. Angew Chem Int Ed, 2021, 60: 11104–11109

    Article  CAS  Google Scholar 

  25. Cai W, Luo T, Mao L, Wang M. Angew Chem Int Ed, 2021, 60: 8596–8606

    Article  CAS  Google Scholar 

  26. Ryu JY, Won EJ, Lee HAR, Kim JH, Hui E, Kim HP, Yoon TJ. Biomaterials, 2020, 232: 119736

    Article  CAS  PubMed  Google Scholar 

  27. Manna D, Maji B, Gangopadhyay SA, Cox KJ, Zhou Q, Law BK, Mazitschek R, Choudhary A. Angew Chem Int Ed, 2019, 58: 6285–6289

    Article  CAS  Google Scholar 

  28. Kim H, Lee WJ, Oh Y, Kang SH, Hur JK, Lee H, Song WJ, Lim KS, Park YH, Song BS, Jin YB, Jun BH, Jung C, Lee DS, Kim SU, Lee SH. Nucl Acids Res, 2020, 48: 8601–8616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Breinig M, Schweitzer AY, Herianto AM, Revia S, Schaefer L, Wendler L, Cobos Galvez A, Tschaharganeh DF. Nat Methods, 2019, 16: 51–54

    Article  CAS  PubMed  Google Scholar 

  30. Gangopadhyay SA, Cox KJ, Manna D, Lim D, Maji B, Zhou Q, Choudhary A. Biochemistry, 2019, 58: 234–244

    Article  CAS  PubMed  Google Scholar 

  31. Kempton HR, Goudy LE, Love KS, Qi LS. Mol Cell, 2020, 78: 184–191.e3

    Article  CAS  PubMed  Google Scholar 

  32. Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M. Chem Soc Rev, 2021, 50: 619–657

    Article  CAS  PubMed  Google Scholar 

  33. VahidMohammadi A, Rosen J, Gogotsi Y. Science, 2021, 372: eabf1581

    Article  CAS  PubMed  Google Scholar 

  34. Huang K, Li Z, Lin J, Han G, Huang P. Chem Soc Rev, 2018, 47: 5109–5124

    Article  CAS  PubMed  Google Scholar 

  35. Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, Liu Z, Ma R, Sasaki T, Geng F. Angew Chem Int Ed, 2016, 55: 14569–14574

    Article  CAS  Google Scholar 

  36. Lin H, Gao S, Dai C, Chen Y, Shi J. J Am Chem Soc, 2017, 139: 16235–16247

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, Chen Y, Li X, Gao W, Zhang L, Liu J, Zheng Y, Chen H, Shi J. Adv Mater, 2015, 27: 7117–7122

    Article  CAS  PubMed  Google Scholar 

  38. Tang W, Dong Z, Zhang R, Yi X, Yang K, Jin M, Yuan C, Xiao Z, Liu Z, Cheng L. ACS Nano, 2019, 13: 284–294

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Wei S, Wang S, Zhu X, Lei C, Huang Y, Nie Z, Yao S. Anal Chem, 2019, 91: 1651–1658

    Article  CAS  PubMed  Google Scholar 

  40. Wang S, Song W, Wei S, Zeng S, Yang S, Lei C, Huang Y, Nie Z, Yao S. Anal Chem, 2019, 91: 8622–8629

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Green AA, Yan H, Fan C. Nat Chem, 2017, 9: 1056–1067

    Article  CAS  PubMed  Google Scholar 

  42. Wang M, He F, Li H, Yang S, Zhang J, Ghosh P, Wang HH, Nie Z. Nano Lett, 2019, 19: 2603–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xin H, Namgung B, Lee LP. Nat Rev Mater, 2018, 3: 228–243

    Article  CAS  Google Scholar 

  44. Peng H, Le C, Wu J, Li XF, Zhang H, Le XC. ACS Nano, 2020, 14: 2817–2826

    Article  CAS  PubMed  Google Scholar 

  45. Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N, Huang Z. Nature, 2016, 532: 522–526

    Article  CAS  PubMed  Google Scholar 

  46. Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Mol Ther, 2017, 25: 1476–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Degors IMS, Wang C, Rehman ZU, Zuhorn IS. Acc Chem Res, 2019, 52: 1750–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao Y, Xiong X, Wong S, Charles EJ, Lim WA, Qi LS. Nat Methods, 2016, 13: 1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP. Proc Natl Acad Sci USA, 2011, 108: 8617–8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, Lieberman J, Peer D. Sci Adv, 2020, 6: eabc9450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang P, Liu X, Abegg D, Tanaka T, Tong Y, Benhamou RI, Baisden J, Crynen G, Meyer SM, Cameron MD, Chatterjee AK, Adibekian A, Childs-Disney JL, Disney MD. J Am Chem Soc, 2021, 143: 13044–13055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Micura R, Höbartner C. Chem Soc Rev, 2020, 49: 7331–7353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFA0907500), the National Natural Science Foundation of China (22034002, 21974038, 21725503, 22074034) and the Natural Science Foundation of Hunan Province (2022JJ20004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Lei.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, Z., Tang, R. et al. Responsive MXene nanovehicles deliver CRISPR/Cas12a for boolean logic-controlled gene editing. Sci. China Chem. 65, 2318–2326 (2022). https://doi.org/10.1007/s11426-022-1376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1376-1

Keywords

Navigation