Skip to main content
Log in

The marriage of dual-acceptor strategy and C-H activation polymerization: naphthalene diimide-based n-type polymers with adjustable molar mass and decent performance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of readily accessible high-mobility n-type semiconducting polymers is in great demand for realizing high-performance p-n junction-based organic electronics. In this study, we demonstrate that with the combination of dual-acceptor strategy and C-H direct arylation polymerization (DArP), unipolar n-type semiconducting polymers can be conveniently synthesized. By tuning the monomer concentration, three dual-acceptor polymers, namely, poly(naphthalene diimide-alt-dithiophenyl pyrrolopyrrole-dione) (PNDI-DPP), poly(naphthalene diimide-alt-dithiophenyl isoindigo) (PNDI-IID), and poly (naphthalene diimide-alt-dithiophenyl bezothiadiazole) (PNDI-BT) can be obtained via C-H activation with decent number average molecular weight of ∼10 to 30 kg mol−1 and relatively narrow polydispersity index of ∼2. In addition, these polymers are defect-free in nature as evidenced by the nuclear magnetic resonance. Moreover, we attribute the different molar masses of the three copolymers under the same DArP condition to the different α-C-H acidity, which may stem from different electron-withdrawing capability of the hydrogenated acceptor units. Furthermore, the influence of the hydrogenated acceptor monomers on the optical, electrochemical and charge transporting properties is comprehensively studied. Among the three dual-acceptor polymers, PNDI-BT demonstrates the highest electron mobilities of up to 0.6 cm2 V−1 s−1 in unipolar n-type organic transistors because of its relatively planar backbone, larger overlaps of the lowest unoccupied molecular orbital and strong H-aggregation. Note that the transistor performance of PNDI-BT synthesized via C-H activation in this study is at least comparable to the one made by conventional C(sp2)-C(sp2) Stille or Suzuki cross-coupling polymerization. This study demonstrates the presented protocol can be a useful platform for sustainable and convenient synthesis of high-performance n-type semiconducting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu M, Guo Y, Liu Y. Sci China Chem, 2022, 65: 1225–1264

    Article  CAS  Google Scholar 

  2. Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. Nat Mater, 2020, 19: 491–502

    Article  CAS  Google Scholar 

  3. Guo H, Yang CY, Zhang X, Motta A, Feng K, Xia Y, Shi Y, Wu Z, Yang K, Chen J, Liao Q, Tang Y, Sun H, Woo HY, Fabiano S, Facchetti A, Guo X. Nature, 2021, 599: 67–73

    Article  CAS  Google Scholar 

  4. Kim G, Kang SJ, Dutta GK, Han YK, Shin TJ, Noh YY, Yang C. J Am Chem Soc, 2014, 136: 9477–9483

    Article  CAS  Google Scholar 

  5. Guo X, Facchetti A. Nat Mater, 2020, 19: 922–928

    Article  CAS  Google Scholar 

  6. Yao Y, Dong H, Liu F, Russell TP, Hu W. Adv Mater, 2017, 29: 1701251

    Article  Google Scholar 

  7. Shi Y, Li W, Wang X, Tu L, Li M, Zhao Y, Wang Y, Liu Y. Chem Mater, 2022, 34: 1403–1413

    Article  CAS  Google Scholar 

  8. Feng K, Guo H, Sun H, Guo X. Acc Chem Res, 2021, 54: 3804–3817

    Article  CAS  Google Scholar 

  9. Wang Y, Hasegawa T, Matsumoto H, Michinobu T. J Am Chem Soc, 2019, 141: 3566–3575

    Article  CAS  Google Scholar 

  10. Usta H, Facchetti A, Marks TJ. Acc Chem Res, 2011, 44: 501–510

    Article  CAS  Google Scholar 

  11. Kim SW, Wang Y, You H, Lee W, Michinobu T, Kim BJ. ACS Appl Mater Interfaces, 2019, 11: 35896–35903

    Article  CAS  Google Scholar 

  12. Zhao R, Wang N, Yu Y, Liu J. Chem Mater, 2020, 32: 1308–1314

    Article  CAS  Google Scholar 

  13. Zhang W, Sun C, Angunawela I, Meng L, Qin S, Zhou L, Li S, Zhuo H, Yang G, Zhang ZG, Ade H, Li Y. Adv Mater, 2022, 34: 2108749

    Article  CAS  Google Scholar 

  14. Wang Y, Nakano M, Michinobu T, Kiyota Y, Mori T, Takimiya K. Macromolecules, 2017, 50: 857–864

    Article  CAS  Google Scholar 

  15. Wang Y, Takimiya K. Adv Mater, 2020, 32: 2002060

    Article  Google Scholar 

  16. Feng K, Guo H, Wang J, Shi Y, Wu Z, Su M, Zhang X, Son JH, Woo HY, Guo X. J Am Chem Soc, 2021, 143: 1539–1552

    Article  CAS  Google Scholar 

  17. Marks A, Chen X, Wu R, Rashid RB, Jin W, Paulsen BD, Moser M, Ji X, Griggs S, Meli D, Wu X, Bristow H, Strzalka J, Gasparini N, Costantini G, Fabiano S, Rivnay J, McCulloch I. J Am Chem Soc, 2022, 144: 4642–4656

    Article  CAS  Google Scholar 

  18. Sun H, Guo X, Facchetti A. Chem, 2020, 6: 1310–1326

    Article  CAS  Google Scholar 

  19. Wang Y, Michinobu T. J Mater Chem C, 2018, 6: 10390–10410

    Article  CAS  Google Scholar 

  20. Yang J, Zhao Z, Wang S, Guo Y, Liu Y. Chem, 2018, 4: 2748–2785

    Article  CAS  Google Scholar 

  21. Shi Y, Guo H, Qin M, Zhao J, Wang Y, Wang H, Wang Y, Facchetti A, Lu X, Guo X. Adv Mater, 2018, 30: 1705745

    Article  Google Scholar 

  22. Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Angew Chem Int Ed, 2020, 59: 14449–14457

    Article  CAS  Google Scholar 

  23. Wang Y, Hasegawa T, Matsumoto H, Mori T, Michinobu T. Adv Mater, 2018, 30: 1707164

    Article  Google Scholar 

  24. Chen Z, Zheng Y, Yan H, Facchetti A. J Am Chem Soc, 2009, 131: 8–9

    Article  CAS  Google Scholar 

  25. Wang Y, Hasegawa T, Matsumoto H, Mori T, Michinobu T. Adv Funct Mater, 2017, 27: 1701486

    Article  Google Scholar 

  26. Ye L, Hooshmand T, Thompson BC. ACS Macro Lett, 2022, 11: 78–83

    Article  CAS  Google Scholar 

  27. Mayhugh AL, Yadav P, Luscombe CK. J Am Chem Soc, 2022, 144: 6123–6135

    Article  CAS  Google Scholar 

  28. Bura T, Blaskovits JT, Leclerc M. J Am Chem Soc, 2016, 138: 10056–10071

    Article  CAS  Google Scholar 

  29. Kuramochi M, Kuwabara J, Lu W, Kanbara T. Macromolecules, 2014, 47: 7378–7385

    Article  CAS  Google Scholar 

  30. Wang Y, Hasegawa T, Matsumoto H, Michinobu T. Angew Chem Int Ed, 2019, 58: 11893–11902

    Article  CAS  Google Scholar 

  31. Guo X, Watson MD. Org Lett, 2008, 10: 5333–5336

    Article  CAS  Google Scholar 

  32. Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RPH, Melkonyan FS, Facchetti A, Marks TJ. Macromolecules, 2018, 51: 9140–9155

    Article  CAS  Google Scholar 

  33. Shen T, Li W, Zhao Y, Liu Y, Wang Y. Matter, 2022, 5: 1953–1968

    Article  CAS  Google Scholar 

  34. Ma Z, Dang D, Tang Z, Gedefaw D, Bergqvist J, Zhu W, Mammo W, Andersson MR, Inganäs O, Zhang F, Wang E. Adv Energy Mater, 2014, 4: 1301455

    Article  Google Scholar 

  35. Matsidik R, Komber H, Luzio A, Caironi M, Sommer M. J Am Chem Soc, 2015, 137: 6705–6711

    Article  CAS  Google Scholar 

  36. Pankow RM, Wu J, Harbuzaru A, Kerwin B, Chen Y, Ortiz RP, Facchetti A, Marks TJ. Chem Mater, 2022, 34: 3267–3279

    Article  CAS  Google Scholar 

  37. Gao Y, Zhang X, Tian H, Zhang J, Yan D, Geng Y, Wang F. Adv Mater, 2015, 27: 6753–6759

    Article  CAS  Google Scholar 

  38. Wiberg KB, Rablen PR. J Org Chem, 2018, 83: 15463–15469

    Article  CAS  Google Scholar 

  39. Wakioka M, Kitano Y, Ozawa F. Macromolecules, 2013, 46: 370–374

    Article  CAS  Google Scholar 

  40. Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J. Chem Mater, 2012, 24: 1762–1770

    Article  CAS  Google Scholar 

  41. Bricks JL, Slominskii YL, Panas ID, Demchenko AP. Methods Appl Fluoresc, 2018, 6: 012001

    Article  Google Scholar 

  42. Kim S, An TK, Chen J, Kang I, Kang SH, Chung DS, Park CE, Kim YH, Kwon SK. Adv Funct Mater, 2011, 21: 1616–1623

    Article  CAS  Google Scholar 

  43. Spano FC. Acc Chem Res, 2010, 43: 429–439

    Article  CAS  Google Scholar 

  44. Eder T, Vogelsang J, Bange S, Remmerssen K, Schmitz D, Jester SS, Keller TJ, Höger S, Lupton JM. Angew Chem Int Ed, 2019, 58: 18898–18902

    Article  CAS  Google Scholar 

  45. Yagai S, Goto Y, Lin X, Karatsu T, Kitamura A, Kuzuhara D, Yamada H, Kikkawa Y, Saeki A, Seki S. Angew Chem Int Ed, 2012, 51: 6643–6647

    Article  CAS  Google Scholar 

  46. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z. Nature, 2011, 480: 504–508

    Article  CAS  Google Scholar 

  47. Wang Y, Tan ATR, Mori T, Michinobu T. J Mater Chem C, 2018, 6: 3593–3603

    Article  CAS  Google Scholar 

  48. Gu C, Hu W, Yao J, Fu H. Chem Mater, 2013, 25: 2178–2183

    Article  CAS  Google Scholar 

  49. Ni Z, Wang H, Dong H, Dang Y, Zhao Q, Zhang X, Hu W. Nat Chem, 2019, 11: 271–277

    Article  CAS  Google Scholar 

  50. Karpov Y, Zhao W, Raguzin I, Beryozkina T, Bakulev V, Al-Hussein M, Häußler L, Stamm M, Voit B, Facchetti A, Tkachov R, Kiriy A. ACS Appl Mater Interfaces, 2015, 7: 12478–12487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0703200), the National Natural Science Foundation of China (61890940, 51903051). Y.W. acknowledges the support by the Natural Science Foundation of Shanghai (21ZR1406900), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (SSH2021010). Y.W. thanks Dr. Kui Feng from Southern University of Science and Technology for the help of HT-GPC measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhao, Yunqi Liu or Yang Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1367_MOESM1_ESM.docx

The marriage of dual-acceptor strategy and C-H activation polymerization: naphthalene diimide-based n-type polymers with adjustable molar mass and decent performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YH., Li, W., Shen, T. et al. The marriage of dual-acceptor strategy and C-H activation polymerization: naphthalene diimide-based n-type polymers with adjustable molar mass and decent performance. Sci. China Chem. 66, 548–561 (2023). https://doi.org/10.1007/s11426-022-1367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1367-7

Keywords

Navigation