Skip to main content
Log in

Synthesis of yolk-shell Bi2O3@TiO2 submicrospheres with enhanced potassium storage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Due to their enormous potential for large-scale energy storage, rechargeable potassium-ion batteries have been widely researched and developed. However, the drastic volume change of electrode materials induced by the huge size of potassium ions during cycling remains a challenge for the construction of stable anodes. Herein, we propose a novel weak acid etching strategy to design and fabricate robust yolk-shell spheres with enough internal void space, in which the Bi2O3 nanospheres are well confined in the compartments of TiO2 submicrospheres (y-Bi2O3@TiO2). In situ transmission electron microscopy (TEM) and ex situ X-ray diffraction (XRD) are conducted to elucidate the structural evolution of y-Bi2O3@TiO2 and the interaction between K+ and Bi2O3 during cycling. Thanks to the yolk-shell nanoarchitecture and the superior buffering property of outer TiO2 covering, the as-obtained composite shows a high specific capacity of 383.5 mAh g−1 at 100 mA g−1, a considerable rate capacity of 134.1 mAh g−1 at 2 A g−1 and a stable cycling performance of 216.8 mAh g−1 at 500 mA g−1 over 500 cycles when used for potassium storage. Subsequently, the potassium-ion full battery, constructed by pairing y-Bi2O3@TiO2 anode with the thermally annealed 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) cathode, exhibits an outstanding cycling stability. Hopefully, this carefully-designed strategy can inspire the further development of superior energy storage materials in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon JM, Armand M. Nature, 2001, 414: 359–367

    Article  CAS  PubMed  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM. Science, 2011, 334: 928–935

    Article  CAS  PubMed  Google Scholar 

  3. Zhou X, Liu T, Zhao G, Yang X, Guo H. Energy Storage Mater, 2021, 40: 139–149

    Article  Google Scholar 

  4. Xu Y, Zhang C, Zhou M, Fu Q, Zhao C, Wu M, Lei Y. Nat Commun, 2018, 9: 1720

    Article  PubMed  PubMed Central  Google Scholar 

  5. Su D, McDonagh A, Qiao SZ, Wang G. Adv Mater, 2017, 29: 1604007

    Article  Google Scholar 

  6. Hwang JY, Myung ST, Sun YK. Adv Funct Mater, 2018, 28: 1802938

    Article  Google Scholar 

  7. Ge X, Liu S, Qiao M, Du Y, Li Y, Bao J, Zhou X. Angew Chem Int Ed, 2019, 58: 14578–14583

    Article  CAS  Google Scholar 

  8. Wessells CD, Peddada SV, Huggins RA, Cui Y. Nano Lett, 2011, 11: 5421–5425

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Deng Q, Li Y, Li Y, Zhong W, Hu J, Ji X, Yang C, Lin Z, Huang K. ACS Nano, 2021, 15: 1121–1132

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y, Sun J, He Y, Li J, Xu J, Sun Y, Liao J, Zhou X. Sci China Chem, 2021, 64: 1401–1409

    Article  CAS  Google Scholar 

  11. Huang M, Xi B, Mi L, Zhang Z, Chen W, Feng J, Xiong S. Small, 2022, 18: 2107819

    Article  CAS  Google Scholar 

  12. Lu Y, Chen J. Sci China Chem, 2017, 60: 1533–1539

    Article  CAS  Google Scholar 

  13. Liu Q, Rao AM, Han X, Lu B. Adv Sci, 2021, 8: 2003639

    Article  CAS  Google Scholar 

  14. Li L, Hu Z, Lu Y, Wang C, Zhang Q, Zhao S, Peng J, Zhang K, Chou SL, Chen J. Angew Chem Int Ed, 2021, 60: 13050–13056

    Article  CAS  Google Scholar 

  15. Chen J, Cheng Y, Zhang Q, Luo C, Li HY, Wu Y, Zhang H, Wang X, Liu H, He X, Han J, Peng DL, Liu M, Wang MS. Adv Funct Mater, 2020, 31: 2007158

    Article  Google Scholar 

  16. Chen Y, Xi B, Huang M, Shi L, Huang S, Guo N, Li D, Ju Z, Xiong S. Adv Mater, 2022, 34: 2108621

    Article  CAS  Google Scholar 

  17. Xu J, Xu Y, Lai C, Xia T, Zhang B, Zhou X. Sci China Chem, 2021, 64: 1267–1282

    Article  CAS  Google Scholar 

  18. Mao M, Cui C, Wu M, Zhang M, Gao T, Fan X, Chen J, Wang T, Ma J, Wang C. Nano Energy, 2018, 45: 346–352

    Article  CAS  Google Scholar 

  19. Lei K, Wang C, Liu L, Luo Y, Mu C, Li F, Chen J. Angew Chem Int Ed, 2018, 57: 4687–4691

    Article  CAS  Google Scholar 

  20. Huang J, Lin X, Tan H, Zhang B. Adv Energy Mater, 2018, 8: 1703496

    Article  Google Scholar 

  21. Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y. Adv Funct Mater, 2019, 29: 1809195

    Article  Google Scholar 

  22. Wang A, Hong W, Li L, Guo R, Xiang Y, Ye Y, Zou G, Hou H, Ji X. Energy Storage Mater, 2021, 44: 145–155

    Article  Google Scholar 

  23. Sun X, Wang L, Li C, Wang D, Sikandar I, Man R, Tian F, Qian Y, Xu L. Nano Res, 2021, 14: 4696–4703

    Article  CAS  Google Scholar 

  24. Chen KT, Chong S, Yuan L, Yang YC, Tuan HY. Energy Storage Mater, 2021, 39: 239–249

    Article  Google Scholar 

  25. Zhu H, Liu T, Peng L, Yao W, Kang F, Shu J, Yang C. Nano Energy, 2021, 82: 105784

    Article  CAS  Google Scholar 

  26. Huang C, Xu A, Li G, Sun H, Wu S, Xu Z, Yan Y. Small, 2021, 17: 2100685

    Article  CAS  Google Scholar 

  27. Zheng H, Zeng Y, Zhang H, Zhao X, Chen M, Liu J, Lu X. J Power Sources, 2019, 433: 126684

    Article  CAS  Google Scholar 

  28. Zheng H, Li H, Yu M, Zhang M, Tong Y, Cheng F, Lu X. J Mater Chem A, 2017, 5: 25539–25544

    Article  CAS  Google Scholar 

  29. Li J, Zhuang N, Xie J, Li X, Zhuo W, Wang H, Na JB, Li X, Yamauchi Y, Mai W. Adv Energy Mater, 2020, 10: 1903455

    Article  CAS  Google Scholar 

  30. Yi X, Ge J, Zhou J, Zhou J, Lu B. Sci China Chem, 2021, 64: 238–244

    Article  CAS  Google Scholar 

  31. Liu H, Li W, Shen D, Zhao D, Wang G. J Am Chem Soc, 2015, 137: 13161–13166

    Article  CAS  PubMed  Google Scholar 

  32. Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao D. Adv Mater, 2017, 29: 1700523

    Article  Google Scholar 

  33. Zhang Z, Du Y, Wang QC, Xu J, Zhou YN, Bao J, Shen J, Zhou X. Angew Chem Int Ed, 2020, 59: 17504–17510

    Article  CAS  Google Scholar 

  34. He F, Tang C, Zhu G, Liu Y, Du A, Zhang Q, Wu M, Zhang H. Sci China Chem, 2021, 64: 964–973

    Article  CAS  Google Scholar 

  35. Wang B, Zhang X, Liu X, Wang G, Wang H, Bai J. J Colloid Interface Sci, 2018, 528: 225–236

    Article  CAS  PubMed  Google Scholar 

  36. Shi X, Gan Y, Zhang Q, Wang C, Zhao Y, Guan L, Huang W. Adv Mater, 2021, 33: 2100837

    Article  CAS  Google Scholar 

  37. Yang W, Zhou J, Wang S, Wang Z, Lv F, Zhang W, Zhang W, Sun Q, Guo S. ACS Energy Lett, 2020, 5: 1653–1661

    Article  CAS  Google Scholar 

  38. Zan G, Wu T, Hu P, Zhou Y, Zhao S, Xu S, Chen J, Cui Y, Wu Q. Energy Storage Mater, 2020, 28: 82–90

    Article  Google Scholar 

  39. Li Y, Trujillo MA, Fu E, Patterson B, Fei L, Xu Y, Deng S, Smirnov S, Luo H. J Mater Chem A, 2013, 1: 12123–12127

    Article  CAS  Google Scholar 

  40. Fei J, Cui Y, Li J, Xu Z, Yang J, Wang R, Cheng Y, Hang J. Chem Commun, 2017, 53: 13165–13167

    Article  CAS  Google Scholar 

  41. Pan J, Wang N, Zhou Y, Yang X, Zhou W, Qian Y, Yang J. Nano Res, 2017, 10: 1794–1803

    Article  CAS  Google Scholar 

  42. Chang CH, Chen KT, Hsieh YY, Chang CB, Tuan HY. ACS Nano, 2022, 16: 1486–1501

    Article  CAS  Google Scholar 

  43. Huang R, Lin J, Zhou J, Fan E, Zhang X, Chen R, Wu F, Li L. Small, 2021, 17: 2007597

    Article  CAS  Google Scholar 

  44. Chen F, Wang S, He XD, Liao JY, Hu Q, Dong JM, Chen CH. J Mater Chem A, 2020, 8: 13261–13266

    Article  CAS  Google Scholar 

  45. Hu J, Xie Y, Zheng J, Lai Y, Zhang Z. Nano Res, 2020, 13: 2650–2657

    Article  CAS  Google Scholar 

  46. Yang F, Gao H, Hao J, Zhang S, Li P, Liu Y, Chen J, Guo Z. Adv Funct Mater, 2019, 29: 1808291

    Article  Google Scholar 

  47. Choi SH, Baucom J, Li X, Shen L, Seong YH, Han IS, Choi YJ, Ko YN, Kim HJ, Lu Y. J Colloid Interface Sci, 2020, 577: 48–53

    Article  CAS  PubMed  Google Scholar 

  48. Xie F, Zhang L, Chen B, Chao D, Gu Q, Johannessen B, Jaroniec M, Qiao SZ. Matter, 2020, 1: 1681–1693

    Article  Google Scholar 

  49. Fan L, Ma R, Wang J, Yang H, Lu B. Adv Mater, 2018, 30: 1805486

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province of China (22179063 and 22072067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Sheng Wang or Xiaosi Zhou.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, H., Ding, T. et al. Synthesis of yolk-shell Bi2O3@TiO2 submicrospheres with enhanced potassium storage. Sci. China Chem. 65, 1807–1816 (2022). https://doi.org/10.1007/s11426-022-1365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1365-4

Keywords

Navigation