Skip to main content
Log in

Facet-selective growth of MOF-on-MOF heterostructures enables etching-free synthesis of highly-open Co/N-doped carbon nanoframes for efficient catalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Highly-open nanoframe structures consisting of interconnected and exposed ridges are highly desirable for achieving efficient catalysis, but preparing them by a facile etching-free methodology is still a very daunting task. Herein, we propose a novel metal-organic framework (MOF)-assisted and etching-free strategy for the construction of Co/N-doped carbon nanoframes with highly-open and precisely-controllable structures. This strategy is based on the face-selective epitaxial growth of ZIF-67 on the 36 {110} facets of 72-facet ZIF-8 to form an unprecedented anisotropic ZIF-67-on-ZIF-8 heterostructure, which is subsequently pyrolyzed under Ar atmosphere to realize a solid-to-frame transformation. The highly-open nanoframe structure enables the substrates to readily penetrate into the catalyst interior and thereby create additional exposed active sites, which together with the good mass transport, high atomic utilization and increased surface area are responsible for its remarkably enhanced catalytic activity for the biomass valorisation when compared with its solid and closed hollow counterparts. This study could shed valuable insights into the design and preparation of various highly-open nanoframes with abundant exposed active species by using an etching-free strategy for efficient catalysis and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caruso F, Caruso RA, Moehwald H. Science, 1998, 282: 1111–1114

    CAS  Google Scholar 

  2. Lou XWD, Archer LA, Yang Z. Adv Mater, 2008, 20: 3987–4019

    CAS  Google Scholar 

  3. Lu XF, Fang Y, Luan D, Lou XWD. Nano Lett, 2021, 21: 1555–1565

    CAS  Google Scholar 

  4. Dhakshinamoorthy A, Li Z, Garcia H. Chem Soc Rev, 2018, 47: 8134–8172

    CAS  Google Scholar 

  5. Chen S, Li M, Gao M, Jin J, van Spronsen MA, Salmeron MB, Yang P. Nano Lett, 2020, 20: 1974–1979

    CAS  Google Scholar 

  6. Chen G, Li J, Wang S, Han J, Wang X, She P, Fan W, Guan B, Tian P, Yu J. Angew Chem Int Ed, 2022, 61: e202200677

    CAS  Google Scholar 

  7. Yang TH, Ahn J, Shi S, Wang P, Gao R, Qin D. Chem Rev, 2021, 121: 796–833

    CAS  Google Scholar 

  8. Zhu J, Xu L, Lyu Z, Xie M, Chen R, Jin W, Mavrikakis M, Xia Y. Angew Chem Int Ed, 2021, 60: 10384–10392

    CAS  Google Scholar 

  9. Han L, Yu XY, Lou XWD. Adv Mater, 2016, 28: 4601–4605

    CAS  Google Scholar 

  10. Avci C, Ariñez-Soriano J, Carné-Sánchez A, Guillerm V, Carbonell C, Imaz I, Maspoch D. Angew Chem Int Ed, 2015, 54: 14417–14421

    CAS  Google Scholar 

  11. Wang T, Wang P, Zang W, Li X, Chen D, Kou Z, Mu S, Wang J. Adv Funct Mater, 2022, 32: 2107382

    CAS  Google Scholar 

  12. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444

    Google Scholar 

  13. Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM. Science, 2010, 327: 846–850

    CAS  Google Scholar 

  14. Dhakshinamoorthy A, Garcia H. Chem Soc Rev, 2012, 41: 5262–5284

    CAS  Google Scholar 

  15. Cai ZX, Wang ZL, Kim J, Yamauchi Y. Adv Mater, 2019, 31: 1804903

    Google Scholar 

  16. Ding M, Flaig RW, Jiang HL, Yaghi OM. Chem Soc Rev, 2019, 48: 2783–2828

    CAS  Google Scholar 

  17. Guo T, Chen L, Li Y, Shen K. Small, 2022, 18: 2107739

    CAS  Google Scholar 

  18. Ji L, Wang J, Teng X, Meyer TJ, Chen Z. ACS Catal, 2020, 10: 412–419

    CAS  Google Scholar 

  19. Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang CY, Zhou W, Zhao J, Qiu J. Adv Mater, 2017, 29: 1700874

    Google Scholar 

  20. Chen H, Shen K, Tan Y, Li Y. ACS Nano, 2019, 13: 7800–7810

    CAS  Google Scholar 

  21. Wang Z, Shen K, Chen L, Li Y. Sci China Chem, 2022, 65: 619–629

    CAS  Google Scholar 

  22. Cravillon J, Schröder CA, Bux H, Rothkirch A, Caro J, Wiebcke M. CrystEngComm, 2012, 14: 492–498

    CAS  Google Scholar 

  23. Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Chem Mater, 2011, 23: 2130–2141

    CAS  Google Scholar 

  24. Jeoung S, Ju IT, Kim JH, Joo SH, Moon HR. J Mater Chem A, 2018, 6: 18906–18911

    CAS  Google Scholar 

  25. Xu H, Niu X, Liu Z, Sun M, Liu Z, Tian Z, Wu X, Huang B, Tang Y, Yan CH. Small, 2021, 17: 2103064

    CAS  Google Scholar 

  26. Cai ZX, Wang ZL, Xia YJ, Lim H, Zhou W, Taniguchi A, Ohtani M, Kobiro K, Fujita T, Yamauchi Y. Angew Chem Int Ed, 2021, 60: 4747–4755

    CAS  Google Scholar 

  27. Li H, Qin Z, Yang X, Chen X, Li Y, Shen K. ACS Cent Sci, 2022, 8: 718–728

    CAS  Google Scholar 

  28. Qin Z, Li H, Yang X, Chen L, Li Y, Shen K. Appl Catal B-Environ, 2022, 307: 121163

    CAS  Google Scholar 

  29. Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang B, Zhang Q, Titirici MM, Wei F. Adv Mater, 2016, 28: 6845–6851

    CAS  Google Scholar 

  30. Ding D, Shen K, Chen X, Chen H, Chen J, Fan T, Wu R, Li Y. ACS Catal, 2018, 8: 7879–7888

    CAS  Google Scholar 

  31. Zhao Y, Lee SY, Becknell N, Yaghi OM, Angell CA. J Am Chem Soc, 2016, 138: 10818–10821

    CAS  Google Scholar 

  32. Chen H, Shen K, Mao Q, Chen J, Li Y. ACS Catal, 2018, 8: 1417–1426

    Google Scholar 

  33. Zhang SL, Lu XF, Wu ZP, Luan D, Lou XWD. Angew Chem Int Ed, 2021, 60: 19068–19073

    CAS  Google Scholar 

  34. Li X, Zeng C, Jiang J, Ai L. J Mater Chem A, 2016, 4: 7476–7482

    CAS  Google Scholar 

  35. Bhadra BN, Khan NA, Jhung SH. J Mater Chem A, 2019, 7: 17823–17833

    CAS  Google Scholar 

  36. Zhou P, Jiang L, Wang F, Deng K, Lv K, Zhang Z. Sci Adv, 2017, 3: e1601945

    Google Scholar 

  37. Li L, Dai P, Gu X, Wang Y, Yan L, Zhao X. J Mater Chem A, 2017, 5: 789–795

    CAS  Google Scholar 

  38. Zhong Y, Lu Y, Pan Z, Yang J, Du G, Chen J, Zhang Q, Zhou H, Wang J, Wang C, Li W. Adv Funct Mater, 2021, 31: 2009853

    CAS  Google Scholar 

  39. Dhakshinamoorthy A, Garcia H. Chem Soc Rev, 2014, 43: 5750–5765

    CAS  Google Scholar 

  40. Sun K, Chen S, Li Z, Lu G, Cai C. Green Chem, 2019, 21: 1602–1608

    CAS  Google Scholar 

  41. Zhang Z, Huber GW. Chem Soc Rev, 2018, 47: 1351–1390

    CAS  Google Scholar 

  42. Motagamwala AH, Won W, Sener C, Alonso DM, Maravelias CT, Dumesic JA. Sci Adv, 2018, 4: eaap9722

    Google Scholar 

  43. Feng Y, Jia W, Yan G, Zeng X, Sperry J, Xu B, Sun Y, Tang X, Lei T, Lin L. J Catal, 2020, 381: 570–578

    CAS  Google Scholar 

  44. Huang M, Li Y, Li Y, Liu J, Shu S, Liu Y, Ke Z. Chem Commun, 2019, 55: 6213–6216

    CAS  Google Scholar 

  45. Davis SE, Ide MS, Davis RJ. Green Chem, 2013, 15: 17–45

    CAS  Google Scholar 

  46. Huang K, Fu H, Shi W, Wang H, Cao Y, Yang G, Peng F, Wang Q, Liu Z, Zhang B, Yu H. J Catal, 2019, 377: 283–292

    CAS  Google Scholar 

  47. Li X, Jia P, Wang T. ACS Catal, 2016, 6: 7621–7640

    CAS  Google Scholar 

  48. Gupta K, Rai RK, Dwivedi AD, Singh SK. ChemCatChem, 2017, 9: 2760–2767

    CAS  Google Scholar 

  49. Besson M, Gallezot P, Pinel C. Chem Rev, 2014, 114: 1827–1870

    CAS  Google Scholar 

  50. Wang GH, Deng X, Gu D, Chen K, Tüysüz H, Spliethoff B, Bongard HJ, Weidenthaler C, Schmidt W, Schüth F. Angew Chem Int Ed, 2016, 55: 11101–11105

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Natural Science Funds for Distinguished Young Scholar (2018B030306050), the National Natural Science Foundation of China (22138003, 21825802), and the Natural Science Foundation of Guangdong Province (2017A030312005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Shen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1357_MOESM1_ESM.docx

Facet-selective growth of MOF-on-MOF heterostructures enables etching-free synthesis of highly-open Co/N-doped carbon nanoframes for efficient catalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, L., Yang, X. et al. Facet-selective growth of MOF-on-MOF heterostructures enables etching-free synthesis of highly-open Co/N-doped carbon nanoframes for efficient catalysis. Sci. China Chem. 65, 2450–2461 (2022). https://doi.org/10.1007/s11426-022-1357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1357-y

Keywords

Navigation