Skip to main content
Log in

De novo design of transmembrane nanopores

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transmembrane nanopores are structurally stable and biocompatible, and have various applications in molecular sensing and selective transport. The relationship between the function and structure is crucial for transmembrane nanopores, but it is still challenging to design and precisely tune the structure of conventional protein nanopores from scratch, albeit of abundant previous work on natural and bioengineered transmembrane protein nanopores. Therefore, numerous types of artificial transmembrane nanopores that can be de novo designed are rapidly under development, such as molecular nanopores, peptide nanopores, and DNA origami nanopores. In this review, we compare different building blocks of “bottom-up” built nanopores in terms of construction methods, structures and applications, and also describe important advances in de novo designed proteins from the perspective of theoretical simulations as well as an outlook for artificial intelligence-assisted nanopore design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao R, Lin Y, Ying YL, Long YT. Sci China Chem, 2019, 62: 1576–1587

    Article  CAS  Google Scholar 

  2. Howorka S. Nat Nanotech, 2017, 12: 619–630

    Article  CAS  Google Scholar 

  3. Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Nat Biotechnol, 2012, 30: 349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laszlo AH, Derrington IM, Ross BC, Brinkerhoff H, Adey A, Nova IC, Craig JM, Langford KW, Samson JM, Daza R, Doering K, Shendure J, Gundlach JH. Nat Biotechnol, 2014, 32: 829–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Z, Yu L, Yang T, Chen Y. Sci China Chem, 2018, 61: 1243–1260

    Article  CAS  Google Scholar 

  6. Qiao D, Joshi H, Zhu H, Wang F, Xu Y, Gao J, Huang F, Aksimentiev A, Feng J. J Am Chem Soc, 2021, 143: 15975–15983

    Article  CAS  PubMed  Google Scholar 

  7. Vorobieva AA, White P, Liang B, Horne JE, Bera AK, Chow CM, Gerben S, Marx S, Kang A, Stiving AQ, Harvey SR, Marx DC, Khan GN, Fleming KG, Wysocki VH, Brockwell DJ, Tamm LK, Radford SE, Baker D. Science, 2021, 371: eabc8182

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xing Y, Dorey A, Jayasinghe L, Howorka S. Nat Nanotechnol, 2022, 17: 708–713

    Article  CAS  PubMed  Google Scholar 

  9. Israelachvili JN. Intermolecular and Surface Forces. London: Academic Press, 2011

    Google Scholar 

  10. Kučerka N, Nieh MP, Katsaras J. Biochim Biophys Acta, 2011, 1808: 2761–2771

    Article  PubMed  Google Scholar 

  11. Langton MJ. Nat Rev Chem, 2021, 5: 46–61

    Article  CAS  Google Scholar 

  12. Zheng SP, Huang LB, Sun Z, Barboiu M. Angew Chem Int Ed, 2021, 60: 566–597

    Article  CAS  Google Scholar 

  13. Seifert A, Göpfrich K, Burns JR, Fertig N, Keyser UF, Howorka S. ACS Nano, 2015, 9: 1117–1126

    Article  CAS  PubMed  Google Scholar 

  14. Göpfrich K, Li CY, Mames I, Bhamidimarri SP, Ricci M, Yoo J, Mames A, Ohmann A, Winterhalter M, Stulz E, Aksimentiev A, Keyser UF. Nano Lett, 2016, 16: 4665–4669

    Article  PubMed  PubMed Central  Google Scholar 

  15. Burns JR, Göpfrich K, Wood JW, Thacker VV, Stulz E, Keyser UF, Howorka S. Angew Chem Int Ed, 2013, 52: 12069–12072

    Article  CAS  Google Scholar 

  16. Cressiot B, Greive SJ, Si W, Pascoa TC, Mojtabavi M, Chechik M, Jenkins HT, Lu X, Zhang K, Aksimentiev A, Antson AA, Wanunu M. ACS Nano, 2017, 11: 11931–11945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burns JR, Seifert A, Fertig N, Howorka S. Nat Nanotech, 2016, 11: 152–156

    Article  CAS  Google Scholar 

  18. Göpfrich K, Zettl T, Meijering AEC, Hernández-Ainsa S, Kocabey S, Liedl T, Keyser UF. Nano Lett, 2015, 15: 3134–3138

    Article  PubMed  Google Scholar 

  19. Göpfrich K, Li CY, Ricci M, Bhamidimarri SP, Yoo J, Gyenes B, Ohmann A, Winterhalter M, Aksimentiev A, Keyser UF. ACS Nano, 2016, 10: 8207–8214

    Article  PubMed  PubMed Central  Google Scholar 

  20. Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, Dietz H, Simmel FC. Science, 2012, 338: 932–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burns JR, Al-Juffali N, Janes SM, Howorka S. Angew Chem Int Ed, 2014, 53: 12466–12470

    Article  CAS  Google Scholar 

  22. Burns JR, Stulz E, Howorka S. Nano Lett, 2013, 13: 2351–2356

    Article  CAS  PubMed  Google Scholar 

  23. Krishnan S, Ziegler D, Arnaut V, Martin TG, Kapsner K, Henneberg K, Bausch AR, Dietz H, Simmel FC. Nat Commun, 2016, 7: 12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka Y, Kobuke Y, Sokabe M. Angew Chem Int Ed, 1995, 34: 693–694

    Article  CAS  Google Scholar 

  25. Chen L, Si W, Zhang L, Tang G, Li ZT, Hou JL. J Am Chem Soc, 2013, 135: 2152–2155

    Article  CAS  PubMed  Google Scholar 

  26. Ogoshi T, Yamagishi TA, Nakamoto Y. Chem Rev, 2016, 116: 7937–8002

    Article  CAS  PubMed  Google Scholar 

  27. Wen LP, Jiang L. Sci China Chem, 2011, 54: 1537–1546

    Article  CAS  Google Scholar 

  28. Shen YX, Si W, Erbakan M, Decker K, De Zorzi R, Saboe PO, Kang YJ, Majd S, Butler PJ, Walz T, Aksimentiev A, Hou J, Kumar M. Proc Natl Acad Sci USA, 2015, 112: 9810–9815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Licsandru E, Kocsis I, Shen YX, Murail S, Legrand YM, van der Lee A, Tsai D, Baaden M, Kumar M, Barboiu M. J Am Chem Soc, 2016, 138: 5403–5409

    Article  CAS  PubMed  Google Scholar 

  30. Song W, Joshi H, Chowdhury R, Najem JS, Shen YX, Lang C, Henderson CB, Tu YM, Farell M, Pitz ME, Maranas CD, Cremer PS, Hickey RJ, Sarles SA, Hou JL, Aksimentiev A, Kumar M. Nat Nanotechnol, 2020, 15: 73–79

    Article  CAS  PubMed  Google Scholar 

  31. Kelkar DA, Chattopadhyay A. Biochim Biophys Acta, 2007, 1768: 2011–2025

    Article  CAS  PubMed  Google Scholar 

  32. Xin P, Zhao L, Mao L, Xu L, Hou S, Kong H, Fang H, Zhu H, Jiang T, Chen CP. Chem Commun, 2020, 56: 13796–13799

    Article  CAS  Google Scholar 

  33. Yan ZJ, Li YW, Yang M, Fu YH, Wen R, Wang W, Li ZT, Zhang Y, Hou JL. J Am Chem Soc, 2021, 143: 11332–11336

    Article  CAS  PubMed  Google Scholar 

  34. Peng S, Barba-Bon A, Pan YC, Nau WM, Guo DS, Hennig A. Angew Chem Int Ed, 2017, 56: 15742–15745

    Article  CAS  Google Scholar 

  35. Grauwels G, Valkenier H, Davis AP, Jabin I, Bartik K. Angew Chem Int Ed, 2019, 58: 6921–6925

    Article  CAS  Google Scholar 

  36. Renier N, Reinaud O, Jabin I, Valkenier H. Chem Commun, 2020, 56: 8206–8209

    Article  CAS  Google Scholar 

  37. Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. J Am Chem Soc, 2020, 142: 13273–13277

    Article  CAS  PubMed  Google Scholar 

  38. Ye T, Hou G, Li W, Wang C, Yi K, Liu N, Liu J, Huang S, Gao J. Nat Commun, 2021, 12: 5231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee JH, Lee JH, Choi YR, Kang P, Choi MG, Jeong KS. J Org Chem, 2014, 79: 6403–6409

    Article  CAS  PubMed  Google Scholar 

  40. Bao C, Ma M, Meng F, Lin Q, Zhu L. New J Chem, 2015, 39: 6297–6302

    Article  CAS  Google Scholar 

  41. Gilles A, Barboiu M. J Am Chem Soc, 2016, 138: 426–432

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, Chen Y, Zhu PP, Si W, Hou JL, Liu Y. Chem Commun, 2017, 53: 3681–3684

    Article  CAS  Google Scholar 

  43. Zhao Y, Cho H, Widanapathirana L, Zhang S. Acc Chem Res, 2013, 46: 2763–2772

    Article  CAS  PubMed  Google Scholar 

  44. Chen S, Wang Y, Nie T, Bao C, Wang C, Xu T, Lin Q, Qu DH, Gong X, Yang Y, Zhu L, Tian H. J Am Chem Soc, 2018, 140: 17992–17998

    Article  CAS  PubMed  Google Scholar 

  45. Lisbjerg M, Valkenier H, Jessen BM, Al-Kerdi H, Davis AP, Pittelkow M. J Am Chem Soc, 2015, 137: 4948–4951

    Article  CAS  PubMed  Google Scholar 

  46. Valkenier H, Akrawi O, Jurček P, Sleziaková K, Lízal T, Bartik K, Šindelář V. Chem, 2019, 5: 429–444

    Article  CAS  Google Scholar 

  47. Wang H, Qian X, Wang K, Su M, Haoyang WW, Jiang X, Brzozowski R, Wang M, Gao X, Li Y, Xu B, Eswara P, Hao XQ, Gong W, Hou JL, Cai J, Li X. Nat Commun, 2018, 9: 1815

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Liu CH, Wang K, Wang M, Yu H, Kandapal S, Brzozowski R, Xu B, Wang M, Lu S, Hao XQ, Eswara P, Nieh MP, Cai J, Li X. J Am Chem Soc, 2019, 141: 16108–16116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shen J, Liu G, Han Y, Jin W. Nat Rev Mater, 2021, 6: 294–312

    Article  CAS  Google Scholar 

  50. Chen F, Shen J, Li N, Roy A, Ye R, Ren C, Zeng H. Angew Chem Int Ed, 2020, 59: 1440–1444

    Article  CAS  Google Scholar 

  51. Shen J, Fan J, Ye R, Li N, Mu Y, Zeng H. Angew Chem Int Ed, 2020, 59: 13328–13334

    Article  CAS  Google Scholar 

  52. Shen J, Ye R, Romanies A, Roy A, Chen F, Ren C, Liu Z, Zeng H. J Am Chem Soc, 2020, 142: 10050–10058

    Article  CAS  PubMed  Google Scholar 

  53. Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Angew Chem, 2020, 132: 4836–4843

    Article  Google Scholar 

  54. Roy A, Shen J, Joshi H, Song W, Tu YM, Chowdhury R, Ye R, Li N, Ren C, Kumar M, Aksimentiev A, Zeng H. Nat Nanotechnol, 2021, 16: 911–917

    Article  CAS  PubMed  Google Scholar 

  55. Itoh Y, Chen S, Hirahara R, Konda T, Aoki T, Ueda T, Shimada I, Cannon JJ, Shao C, Shiomi J, Tabata KV, Noji H, Sato K, Aida T. Science, 2022, 376: 738–743

    Article  CAS  PubMed  Google Scholar 

  56. Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Angew Chem Int Ed, 2021, 60: 10833–10841

    Article  CAS  Google Scholar 

  57. Zhang C, Zhang J, Li W, Mao S, Dong Z. ChemPlusChem, 2021, 86: 492–495

    Article  CAS  PubMed  Google Scholar 

  58. Qi S, Zhang C, Yu H, Zhang J, Yan T, Lin Z, Yang B, Dong Z. J Am Chem Soc, 2021, 143: 3284–3288

    Article  CAS  PubMed  Google Scholar 

  59. Malla JA, Umesh RM, Yousf S, Mane S, Sharma S, Lahiri M, Talukdar P. Angew Chem Int Ed, 2020, 59: 7944–7952

    Article  CAS  Google Scholar 

  60. Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Chem Soc Rev, 2018, 47: 6267–6295

    Article  CAS  PubMed  Google Scholar 

  61. Tao ZR, Wu JX, Zhao YJ, Xu M, Tang WQ, Zhang QH, Gu L, Liu DH, Gu ZY. Nat Commun, 2019, 10: 2911

    Article  PubMed  PubMed Central  Google Scholar 

  62. Huang N, Wang P, Jiang D. Nat Rev Mater, 2016, 1: 1–9

    Article  Google Scholar 

  63. Liang RR, A RH, Xu SQ, Qi QY, Zhao X. J Am Chem Soc, 2020, 142: 70–74

    Article  CAS  PubMed  Google Scholar 

  64. Yang J, Tu B, Zhang G, Liu P, Hu K, Wang J, Yan Z, Huang Z, Fang M, Hou J, Fang Q, Qiu X, Li L, Tang Z. Nat Nanotechnol, 2022, 17: 622–628

    Article  CAS  PubMed  Google Scholar 

  65. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem Rev, 2006, 106: 1105–1136

    Article  CAS  PubMed  Google Scholar 

  66. Tunuguntla RH, Allen FI, Kim K, Belliveau A, Noy A. Nat Nanotech, 2016, 11: 639–644

    Article  CAS  Google Scholar 

  67. Tunuguntla RH, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. Science, 2017, 357: 792–796

    Article  CAS  PubMed  Google Scholar 

  68. Kawano R, Horike N, Hijikata Y, Kondo M, Carné-Sánchez A, Larpent P, Ikemura S, Osaki T, Kamiya K, Kitagawa S, Takeuchi S, Furukawa S. Chem, 2017, 2: 393–403

    Article  CAS  Google Scholar 

  69. Muraoka T, Umetsu K, Tabata KV, Hamada T, Noji H, Yamashita T, Kinbara K. J Am Chem Soc, 2017, 139: 18016–18023

    Article  CAS  PubMed  Google Scholar 

  70. Muraoka T, Noguchi D, Kasai RS, Sato K, Sasaki R, Tabata KV, Ekimoto T, Ikeguchi M, Kamagata K, Hoshino N, Noji H, Akutagawa T, Ichimura K, Kinbara K. Nat Commun, 2020, 11: 2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sasaki R, Sato K, Tabata KV, Noji H, Kinbara K. J Am Chem Soc, 2021, 143: 1348–1355

    Article  CAS  PubMed  Google Scholar 

  72. Jiang T, Hall A, Eres M, Hemmatian Z, Qiao B, Zhou Y, Ruan Z, Couse AD, Heller WT, Huang H, de la Cruz MO, Rolandi M, Xu T. Nature, 2020, 577: 216–220

    Article  CAS  PubMed  Google Scholar 

  73. White CJ, Yudin AK. Nat Chem, 2011, 3: 509–524

    Article  CAS  PubMed  Google Scholar 

  74. García-Fandiño R, Amorín M, Castedo L, Granja JR. Chem Sci, 2012, 3: 3280

    Article  Google Scholar 

  75. Blake S, Capone R, Mayer M, Yang J. Bioconjug Chem, 2008, 19: 1614–1624

    Article  CAS  PubMed  Google Scholar 

  76. Bechtler C, Lamers C. RSC Med Chem, 2021, 12: 1325–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Raynal L, Rose NC, Donald JR, Spicer CD. Chem Eur J, 2021, 27: 69–88

    Article  CAS  PubMed  Google Scholar 

  78. Koshiyama T, Inoue Y, Asada S, Kawahara K, Ide S, Yasuhara K, Ohba M. Chem Commun, 2021, 57: 2895–2898

    Article  CAS  Google Scholar 

  79. Montalbetti CAGN, Falque V. Tetrahedron, 2005, 61: 10827–10852

    Article  CAS  Google Scholar 

  80. Parenty A, Moreau X, Campagne JM. Chem Rev, 2006, 106: 911–939

    Article  CAS  PubMed  Google Scholar 

  81. Kates SA, Solé NA, Johnson CR, Hudson D, Barany G, Albericio F. Tetrahedron Lett, 1993, 34: 1549–1552

    Article  CAS  Google Scholar 

  82. Thomson AR, Wood CW, Burton AJ, Bartlett GJ, Sessions RB, Brady RL, Woolfson DN. Science, 2014, 346: 485–488

    Article  CAS  PubMed  Google Scholar 

  83. Mahendran KR. J Membr Biol, 2020, 253: 491–497

    Article  CAS  PubMed  Google Scholar 

  84. Franceschini L, Soskine M, Biesemans A, Maglia G. Nat Commun, 2013, 4: 2415

    Article  PubMed  Google Scholar 

  85. Dong C, Beis K, Nesper J, Brunkan-Lamontagne AL, Clarke BR, Whitfield C, Naismith JH. Nature, 2006, 444: 226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mahendran KR, Niitsu A, Kong L, Thomson AR, Sessions RB, Woolfson DN, Bayley H. Nat Chem, 2017, 9: 411–419

    Article  CAS  PubMed  Google Scholar 

  87. Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, DeGrado WF. Science, 2014, 346: 1520–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu C, Liu R, Mehta AK, Guerrero-Ferreira RC, Wright ER, Dunin-Horkawicz S, Morris K, Serpell LC, Zuo X, Wall JS, Conticello VP. J Am Chem Soc, 2013, 135: 15565–15578

    Article  CAS  PubMed  Google Scholar 

  89. Scott AJ, Niitsu A, Kratochvil HT, Lang EJM, Sengel JT, Dawson WM, Mahendran KR, Mravic M, Thomson AR, Brady RL, Liu L, Mulholland AJ, Bayley H, DeGrado WF, Wallace MI, Woolfson DN. Nat Chem, 2021, 13: 643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krishnan R S, Satheesan R, Puthumadathil N, Kumar KS, Jayasree P, Mahendran KR. J Am Chem Soc, 2019, 141: 2949–2959

    Article  Google Scholar 

  91. Xu C, Lu P, Gamal El-Din TM, Pei XY, Johnson MC, Uyeda A, Bick MJ, Xu Q, Jiang D, Bai H, Reggiano G, Hsia Y, Brunette TJ, Dou J, Ma D, Lynch EM, Boyken SE, Huang PS, Stewart L, DiMaio F, Kollman JM, Luisi BF, Matsuura T, Catterall WA, Baker D. Nature, 2020, 585: 129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chaturvedi D, Mahalakshmi R. Biochim Biophys Acta, 2017, 1859: 2467–2482

    Article  CAS  Google Scholar 

  93. Dou J, Vorobieva AA, Sheffler W, Doyle LA, Park H, Bick MJ, Mao B, Foight GW, Lee MY, Gagnon LA, Carter L, Sankaran B, Ovchinnikov S, Marcos E, Huang PS, Vaughan JC, Stoddard BL, Baker D. Nature, 2018, 561: 485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shimizu K, Mijiddorj B, Usami M, Mizoguchi I, Yoshida S, Akayama S, Hamada Y, Ohyama A, Usui K, Kawamura I, Kawano R. Nat Nanotechnol, 2022, 17: 67–75

    Article  CAS  PubMed  Google Scholar 

  95. Mahendran KR. Building synthetic transmembrane peptide pores. In: Fahie MAV, Ed. Nanopore Technology: Methods and Protocols. Methods in Molecular Biology. New York: Springer US, 2021. 19–32

    Chapter  Google Scholar 

  96. Montenegro J, Ghadiri MR, Granja JR. Acc Chem Res, 2013, 46: 2955–2965

    Article  CAS  PubMed  Google Scholar 

  97. Montenegro J, Vázquez-Vázquez C, Kalinin A, Geckeler KE, Granja JR. J Am Chem Soc, 2014, 136: 2484–2491

    Article  CAS  PubMed  Google Scholar 

  98. Wolfe AJ, Mohammad MM, Thakur AK, Movileanu L. Biochim Biophys Acta, 2016, 1858: 19–29

    Article  CAS  PubMed  Google Scholar 

  99. Zhang YM, Xu QY, Liu Y. Sci China Chem, 2019, 62: 549–560

    Article  CAS  Google Scholar 

  100. Zhang S, Huang G, Versloot RCA, Bruininks BMH, de Souza PCT, Marrink SJ, Maglia G. Nat Chem, 2021, 13: 1192–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ozores HL, Amorín M, Granja JR. J Am Chem Soc, 2017, 139: 776–784

    Article  CAS  PubMed  Google Scholar 

  102. D’Souza A, Mahajan M, Bhattacharjya S. Chem Sci, 2016, 7: 2563–2571

    Article  PubMed  Google Scholar 

  103. D’Souza A, Wu X, Yeow EKL, Bhattacharjya S. Angew Chem, 2017, 129: 5998–6002

    Article  Google Scholar 

  104. Zhang Y, Bartz R, Grigoryan G, Bryant M, Aaronson J, Beck S, Innocent N, Klein L, Procopio W, Tucker T, Jadhav V, Tellers DM, DeGrado WF. ACS Chem Biol, 2015, 10: 1082–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rothemund PWK. Nature, 2006, 440: 297–302

    Article  CAS  PubMed  Google Scholar 

  106. Seeman NC, Sleiman HF. Nat Rev Mater, 2017, 3: 17068

    Article  Google Scholar 

  107. Dey S, Fan C, Gothelf KV, Li J, Lin C, Liu L, Liu N, Nijenhuis MAD, Saccà B, Simmel FC, Yan H, Zhan P. Nat Rev Methods Primers, 2021, 1: 13

    Article  Google Scholar 

  108. Chen Y, Wang F, Feng J, Fan C. Matter, 2021, 4: 3121–3145

    Article  CAS  Google Scholar 

  109. Dietz H, Douglas SM, Shih WM. Science, 2009, 325: 725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Iinuma R, Ke Y, Jungmann R, Schlichthaerle T, Woehrstein JB, Yin P. Science, 2014, 344: 65–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C. Nature, 2018, 559: 593–598

    Article  CAS  PubMed  Google Scholar 

  112. Zhao Y, Dai X, Wang F, Zhang X, Fan C, Liu X. Nano Today, 2019, 26: 123–148

    Article  CAS  Google Scholar 

  113. Hong F, Zhang F, Liu Y, Yan H. Chem Rev, 2017, 117: 12584–12640

    Article  CAS  PubMed  Google Scholar 

  114. Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Sci China Chem, 2021, 64: 171–203

    Article  CAS  PubMed  Google Scholar 

  115. Bell NAW, Engst CR, Ablay M, Divitini G, Ducati C, Liedl T, Keyser UF. Nano Lett, 2012, 12: 512–517

    Article  CAS  PubMed  Google Scholar 

  116. Wei R, Martin TG, Rant U, Dietz H. Angew Chem Int Ed, 2012, 51: 4864–4867

    Article  CAS  Google Scholar 

  117. Hernández-Ainsa S, Bell NAW, Thacker VV, Göpfrich K, Misiunas K, Fuentes-Perez ME, Moreno-Herrero F, Keyser UF. ACS Nano, 2013, 7: 6024–6030

    Article  PubMed  Google Scholar 

  118. Hernández-Ainsa S, Misiunas K, Thacker VV, Hemmig EA, Keyser UF. Nano Lett, 2014, 14: 1270–1274

    Article  PubMed  Google Scholar 

  119. Plesa C, Ananth AN, Linko V, Gülcher C, Katan AJ, Dietz H, Dekker C. ACS Nano, 2014, 8: 35–43

    Article  CAS  PubMed  Google Scholar 

  120. Dey S, Dorey A, Abraham L, Xing Y, Zhang I, Zhang F, Howorka S, Yan H. Nat Commun, 2022, 13: 2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Nature, 2021, 596: 583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Thornton JM, Laskowski RA, Borkakoti N. Nat Med, 2021, 27: 1666–1669

    Article  CAS  PubMed  Google Scholar 

  123. Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H. Nature, 2022, 602: 523–528

    Article  CAS  PubMed  Google Scholar 

  124. Huang PS, Boyken SE, Baker D. Nature, 2016, 537: 320–327

    Article  CAS  PubMed  Google Scholar 

  125. Crnković A, Srnko M, Anderluh G. Life, 2021, 11: 27

    Article  PubMed  PubMed Central  Google Scholar 

  126. Vorobieva AA. J Mol Biol, 2021, 433: 167154

    Article  CAS  PubMed  Google Scholar 

  127. Lalaurie CJ, Dufour V, Meletiou A, Ratcliffe S, Harland A, Wilson O, Vamasiri C, Shoemark DK, Williams C, Arthur CJ, Sessions RB, Crump MP, Anderson JLR, Curnow P. Sci Rep, 2018, 8: 14564

    Article  PubMed  PubMed Central  Google Scholar 

  128. Desjarlais JR, Handel TM. Protein Sci, 1995, 4: 2006–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Crick FHC. Acta Cryst, 1953, 6: 689–697

    Article  CAS  Google Scholar 

  130. Doyle L, Hallinan J, Bolduc J, Parmeggiani F, Baker D, Stoddard BL, Bradley P. Nature, 2015, 528: 585–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G, Ford A, Gilmore JM, Xu C, DiMaio F, Pereira JH, Sankaran B, Seelig G, Zwart PH, Baker D. Science, 2016, 352: 680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang PS, Oberdorfer G, Xu C, Pei XY, Nannenga BL, Rogers JM, DiMaio F, Gonen T, Luisi B, Baker D. Science, 2014, 346: 481–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. D’Souza A, Bhattacharjya S. Biochemistry, 2021, 60: 431–439

    Article  PubMed  Google Scholar 

  134. Shringari SR, Giannakoulias S, Ferrie JJ, Petersson EJ. Chem Commun, 2020, 56: 6774–6777

    Article  CAS  Google Scholar 

  135. Arnarez C, Uusitalo JJ, Masman MF, Ingólfsson HI, de Jong DH, Melo MN, Periole X, de Vries AH, Marrink SJ. J Chem Theor Comput, 2015, 11: 260–275

    Article  CAS  Google Scholar 

  136. Chan H, Cherukara MJ, Narayanan B, Loeffler TD, Benmore C, Gray SK, Sankaranarayanan SKRS. Nat Commun, 2019, 10: 379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. McDonagh JL, Shkurti A, Bray DJ, Anderson RL, Pyzer-Knapp EO. J Chem Inf Model, 2019, 59: 4278–4288

    Article  CAS  PubMed  Google Scholar 

  138. Henning-Knechtel A, Knechtel J, Magzoub M. Nucleic Acids Res, 2017, 45: 12057–12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Spruijt E, Tusk SE, Bayley H. Nat Nanotech, 2018, 13: 739–745

    Article  CAS  Google Scholar 

  140. Meier W, Nardin C, Winterhalter M. Angew Chem Int Ed, 2000, 39: 459–4602

    Article  Google Scholar 

  141. Nardin C, Winterhalter M, Meier W. Langmuir, 2000, 16: 7708–7712

    Article  CAS  Google Scholar 

  142. Brinkerhoff H, Kang ASW, Liu J, Aksimentiev A, Dekker C. Science, 2021, 374: 1509–1513

    Article  CAS  PubMed  Google Scholar 

  143. Derrington IM, Craig JM, Stava E, Laszlo AH, Ross BC, Brinkerhoff H, Nova IC, Doering K, Tickman BI, Ronaghi M, Mandell JG, Gunderson KL, Gundlach JH. Nat Biotechnol, 2015, 33: 1073–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Jiandong Feng acknowledges the support from the National Natural Science Foundation of China (21974123), the Natural Science Foundation of Zhejiang Province (LR20B050002), and the Fundamental Research Funds for the Central Universities (2022KYY5060320001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Feng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, D., Chen, Y., Tan, H. et al. De novo design of transmembrane nanopores. Sci. China Chem. 65, 2122–2143 (2022). https://doi.org/10.1007/s11426-022-1354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1354-5

Keywords

Navigation