Skip to main content
Log in

Reductive ionic liquid-mediated crystallization for enhanced photovoltaic performance of Sn-based perovskite solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tin (Sn)-based perovskite solar cells (PSCs) have recently made inspiring progress, and certified power conversion efficiency (PCE) has reached impressive value of 14.8%. However, it is still challenging to realize efficient and stable 3D Sn-based PSCs due to the fast crystallization and easy Sn2+ oxidation of Sn-based perovskite. Herein, we reported the utilization of a reductive ionic liquid, methylamine formate (MAFa), to drive the controlled crystallization process and suppress Sn2+ oxidation of FASnI3 perovskite film. The coordination of C=O and Sn2+ and the hydrogen bonding of N-H⋯I between the MAFa and FASnI3 precursors are shown to be responsible for retarding the crystallization of FASnI3 during film-forming process, which promotes the oriented growth and reduced defect traps of the film. Moreover, the strong reducibility of −CHO groups in Fa suppresses the oxidation of Sn2+ in the film. As a result, MAFa-modified 3D PSCs device could reach champion PCE of up to 8.50%, which is enhanced by 26.11% compared to the control device with PCE of 6.74%. Most importantly, the MAFa-modified device shows much improved stability compared to the control device under same conditions without encapsulation. This work adds key building blocks for further boosting the PCE and stability of Sn-based PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. Nat Photon, 2014, 8: 489–494

    Article  CAS  Google Scholar 

  2. Gao W, Chen C, Ran C, Zheng H, Dong H, Xia Y, Chen Y, Huang W. Adv Funct Mater, 2020, 30: 2000794

    Article  CAS  Google Scholar 

  3. Mitzi DB. Chem Rev, 2019, 119: 3033–3035

    Article  CAS  Google Scholar 

  4. Saba M, Quochi F, Mura A, Bongiovanni G. Acc Chem Res, 2016, 49: 166–173

    Article  CAS  Google Scholar 

  5. Huang J, Yuan Y, Shao Y, Yan Y. Nat Rev Mater, 2017, 2: 17042

    Article  CAS  Google Scholar 

  6. Dong H, Ran C, Gao W, Sun N, Liu X, Xia Y, Chen Y, Huang W. Adv Energy Mater, 2021, 12: 2102213

    Article  Google Scholar 

  7. Wang J, Gao Z, Yang J, Lv M, Chen H, Xue D-, Meng X, Yang S. Adv Energy Mater, 2021, 11: 2102131

    Article  CAS  Google Scholar 

  8. Sun N, Gao W, Dong H, Liu Y, Liu X, Wu Z, Song L, Ran C, Chen Y. ACS Energy Lett, 2021, 6: 2863–2875

    Article  CAS  Google Scholar 

  9. Gao W, Li P, Chen J, Ran C, Wu Z. Adv Mater Interfaces, 2019, 6: 1901322

    Article  CAS  Google Scholar 

  10. Gao W, Dong H, Sun N, Chao L, Hui W, Wei Q, Li H, Xia Y, Gao X, Xing G, Wu Z, Song L, Müller-Buschbaum P, Ran C, Chen Y. J Energy Chem, 2022, 68: 789–796

    Article  Google Scholar 

  11. Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RPH, Kanatzidis MG. J Am Chem Soc, 2015, 137: 11445–11452

    Article  CAS  Google Scholar 

  12. Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z. Joule, 2018, 2: 2732–2743

    Article  CAS  Google Scholar 

  13. Wu T, Liu X, He X, Wang Y, Meng X, Noda T, Yang X, Han L. Sci China Chem, 2019, 63: 107–115

    Article  Google Scholar 

  14. Deng L, Wang K, Yang H, Yu H, Hu B. J Phys D-Appl Phys, 2018, 51: 475102

    Article  Google Scholar 

  15. Liu G, Liu C, Lin Z, Yang J, Huang Z, Tan L, Chen Y. ACS Appl Mater Interfaces, 2020, 12: 14049–14056

    Article  CAS  Google Scholar 

  16. Meng X, Lin J, Liu X, He X, Wang Y, Noda T, Wu T, Yang X, Han L. Adv Mater, 2019, 31: 1903721

    Article  CAS  Google Scholar 

  17. Kayesh ME, Matsuishi K, Kaneko R, Kazaoui S, Lee JJ, Noda T, Islam A. ACS Energy Lett, 2018, 4: 278–284

    Article  Google Scholar 

  18. Xiao M, Gu S, Zhu P, Tang M, Zhu W, Lin R, Chen C, Xu W, Yu T, Zhu J. Adv Opt Mater, 2018, 6: 1700615

    Article  Google Scholar 

  19. Marshall KP, Walker M, Walton RI, Hatton RA. Nat Energy, 2016, 1: 16178

    Article  CAS  Google Scholar 

  20. Kayesh ME, Chowdhury TH, Matsuishi K, Kaneko R, Kazaoui S, Lee JJ, Noda T, Islam A. ACS Energy Lett, 2018, 3: 1584–1589

    Article  CAS  Google Scholar 

  21. Tai Q, Guo X, Tang G, You P, Ng TW, Shen D, Cao J, Liu CK, Wang N, Zhu Y, Lee CS, Yan F. Angew Chem Int Ed, 2019, 58: 806–810

    Article  CAS  Google Scholar 

  22. Meng X, Wu T, Liu X, He X, Noda T, Wang Y, Segawa H, Han L. J Phys Chem Lett, 2020, 11: 2965–2971

    Article  CAS  Google Scholar 

  23. Chao L, Xia Y, Li B, Xing G, Chen Y, Huang W. Chem, 2019, 5: 995–1006

    Article  CAS  Google Scholar 

  24. Chao L, Niu T, Gu H, Yang Y, Wei Q, Xia Y, Hui W, Zuo S, Zhu Z, Pei C, Li X, Zhang J, Fang J, Xing G, Li H, Huang X, Gao X, Ran C, Song L, Fu L, Chen Y, Huang W. Research, 2020, 2020: 1–13

    Article  Google Scholar 

  25. Niu T, Chao L, Gao W, Ran C, Song L, Chen Y, Fu L, Huang W. ACS Energy Lett, 2021, 6: 1453–1479

    Article  CAS  Google Scholar 

  26. Lin Y, Liu J, Hu J, Ran C, Chen Y, Xing G, Xia Y, Chen Y. ACS Appl Mater Interfaces, 2021, 13: 58809–58817

    Article  CAS  Google Scholar 

  27. Hui W, Chao L, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y, Huang W. Science, 2021, 371: 1359–1364

    Article  CAS  Google Scholar 

  28. Qiu J, Xia Y, Chen Y, Huang W. Adv Sci, 2019, 6: 1800793

    Article  Google Scholar 

  29. Xu R, Dong H, Li P, Cao X, Li H, Li J, Wu Z. ACS Appl Mater Interfaces, 2021, 13: 33218–33225

    Article  CAS  Google Scholar 

  30. Qiu J, Lin Y, Ran X, Wei Q, Gao X, Xia Y, Müller-Buschbaum P, Chen Y. Sci China Chem, 2021, 64: 1577–1585

    Article  CAS  Google Scholar 

  31. Lee SJ, Shin SS, Kim YC, Kim D, Ahn TK, Noh JH, Seo J, Seok SI. J Am Chem Soc, 2016, 138: 3974–3977

    Article  CAS  Google Scholar 

  32. Kieslich G, Sun S, Cheetham AK. Chem Sci, 2014, 5: 4712–4715

    Article  CAS  Google Scholar 

  33. Gao W, Ran C, Li J, Dong H, Jiao B, Zhang L, Lan X, Hou X, Wu Z. J Phys Chem Lett, 2018, 9: 6999–7006

    Article  CAS  Google Scholar 

  34. Gu L, Li D, Chao L, Dong H, Hui W, Niu T, Ran C, Xia Y, Song L, Chen Y, Huang W. Sol RRL, 2021, 5: 2000672

    Article  Google Scholar 

  35. Peng C, Li C, Zhu M, Zhang C, Jiang X, Yin H, He B, Li H, Li M, So SK, Zhou Z. Angew Chem Int Ed, 2022, 61

  36. Kim M, Kim GH, Lee TK, Choi IW, Choi HW, Jo Y, Yoon YJ, Kim JW, Lee J, Huh D, Lee H, Kwak SK, Kim JY, Kim DS. Joule, 2019, 3: 2179–2192

    Article  CAS  Google Scholar 

  37. Kim H, Lee JW, Han GR, Kim YJ, Kim SH, Kim SK, Kwak SK, Oh JH. Adv Funct Mater, 2021, 32: 2110069

    Article  Google Scholar 

  38. Sun N, Gao W, Dong H, Liu X, Chao L, Hui W, Xia Y, Ran C, Chen Y. ACS Appl Energy Mater, 2022, 5: 4008–4016

    Article  CAS  Google Scholar 

  39. Gupta S, Cahen D, Hodes G. J Phys Chem C, 2018, 122: 13926–13936

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Grants 51972172, 61705102, and 51802253), the China Postdoctoral Science Foundation (Grants 2021M692630), Natural Science Basic Research Plan in Shaanxi Province of China (2022JQ-629, 2021JLM-43), the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (2020GXLH-Z-007 and 2020GXLH-Z-014), Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars, China (Grant BK20200034), the Innovation Project of Optics Valley Laboratory (OVL2021BG006), the Open Project Program of Wuhan National Laboratory for Optoelectronics (2021WNLOKF003), the Young 1000 Talents Global Recruitment Program of China, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenxin Ran, Yingdong Xia or Wei Huang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1352_MOESM1_ESM.docx

Reductive Ionic Liquid-Mediated Crystallization for Enhanced Photovoltaic Performance of Sn-based Perovskite Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Ran, C., Li, W. et al. Reductive ionic liquid-mediated crystallization for enhanced photovoltaic performance of Sn-based perovskite solar cells. Sci. China Chem. 65, 1895–1902 (2022). https://doi.org/10.1007/s11426-022-1352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1352-7

Keywords

Navigation