Skip to main content
Log in

Dual sensitivity of spiropyran-functionalized carbon dots for full color conversions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Multicolor phosphors that respond rapidly to external stimuli are highly desirable for many applications, including lighting, optical displays and sensors. Herein, spiropyran (SP)-functionalized carbon dots (CDs) were synthesized with a broad-spectrum output that were responsive to both ultraviolet (UV)/visible light and pH. The SP-CDs possessed strong ester linkages between the UV-absorbing/blue-emitting CDs and blue-absorbing/red-emitting surface SP groups, allowing efficient Förster resonance energy transfer (FRET) between the donor and acceptor. UV irradiation or acid addition cause the SP ring opening to merocyanine (MC) or protonated MCH+ forms, respectively, together with the formation of sheet-like aggregates. These processes enhanced the red emissions by the SP groups and attenuated blue emissions from the CDs. These changes were fully reversible under visible light or basic conditions, respectively, allowing dynamic regulation of the fluorescence properties (emission colors from blue to red, photoluminescence (PL) intensity) under photoirradiation on the timescale of minutes. As proof-of concept, we demonstrate that the emission properties of the SP-CDs can be used to construct UV and pH sensing materials as well as light emitting diode (LED) with different colors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin Z, Wang H, Yu M, Guo X, Zhang C, Deng H, Zhang P, Chen S, Zeng R, Cui J, Chen J. J Mater Chem C, 2019, 7: 11515–11521

    Article  CAS  Google Scholar 

  2. Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Sci China Chem, 2021, 64: 2060–2104

    Article  CAS  Google Scholar 

  3. Liang HQ, Guo Y, Peng X, Chen B. J Mater Chem A, 2020, 8: 11399–11405

    Article  CAS  Google Scholar 

  4. Isayama K, Aizawa N, Kim JY, Yasuda T. Angew Chem Int Ed, 2018, 57: 11982–11986

    Article  CAS  Google Scholar 

  5. Yu M, Zhang P, Liu L, Wang H, Wang H, Zhang C, Gao Y, Yang C, Cui J, Chen J. Adv Opt Mater, 2021, 9: 2101227

    Article  CAS  Google Scholar 

  6. Tian W, Zhang J, Yu J, Wu J, Zhang J, He J, Wang F. Adv Funct Mater, 2018, 28: 1703548

    Article  Google Scholar 

  7. Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Adv Mater, 2017, 29: 1604894

    Article  Google Scholar 

  8. Yang Y, Li Y, Chen Y, Wang Z, He Z, He J, Zhao H. ACS Appl Mater Interfaces, 2022, 14: 21330–21339

    Article  CAS  PubMed  Google Scholar 

  9. Xu S, Wang W, Li H, Zhang J, Chen R, Wang S, Zheng C, Xing G, Song C, Huang W. Nat Commun, 2020, 11: 4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Q, Li D, Xiao J, Guo F, Qi L. Nano Res, 2019, 12: 1563–1569

    Article  CAS  Google Scholar 

  11. Keyvan Rad J, Balzade Z, Mahdavian AR. J Photochem Photobiol C-Photochem Rev, 2022, 51: 100487

    Article  CAS  Google Scholar 

  12. Wang Y, Santos PJ, Kubiak JM, Guo X, Lee MS, Macfarlane RJ. J Am Chem Soc, 2019, 141: 13234–13243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo S, Matsukawa K, Miyata T, Okubo T, Kuroda K, Shimojima A. J Am Chem Soc, 2015, 137: 15434–15440

    Article  CAS  PubMed  Google Scholar 

  14. Lim S, Song JE, La JA, Cho EC. Chem Mater, 2014, 26: 3272–3279

    Article  CAS  Google Scholar 

  15. Su X, Li H, Lai X, Chen Z, Zeng X. Chem Eng J, 2020, 394: 124919

    Article  CAS  Google Scholar 

  16. Turek VA, Cormier S, Sierra-Martin B, Keyser UF, Ding T, Baumberg JJ. Adv Opt Mater, 2018, 6: 1701270

    Article  Google Scholar 

  17. Huang Z, Hu Y, Jin X, Zhao Y, Su J, Ma X. Adv Opt Mater, 2021, 9: 2100135

    Article  CAS  Google Scholar 

  18. Mo S, Meng Q, Wan S, Su Z, Yan H, Tang BZ, Yin M. Adv Funct Mater, 2017, 27: 1701210

    Article  Google Scholar 

  19. Isoda K, Ishiyama T, Mutoh Y, Matsukuma D. ACS Appl Mater Interfaces, 2019, 11: 12053–12062

    Article  CAS  PubMed  Google Scholar 

  20. Huang G, Xia Q, Huang W, Tian J, He Z, Li BS, Tang BZ. Angew Chem Int Ed, 2019, 58: 17814–17819

    Article  CAS  Google Scholar 

  21. Zhang Q, Qu D, Tian H. Adv Opt Mater, 2019, 7: 1900033

    Article  Google Scholar 

  22. Luo W, Wang G. Adv Opt Mater, 2020, 8: 2001362

    Article  CAS  Google Scholar 

  23. Shu T, Hu L, Shen Q, Jiang L, Zhang Q, Serpe MJ. J Mater Chem B, 2020, 8: 7042–7061

    Article  CAS  PubMed  Google Scholar 

  24. Huang F, Liao WC, Sohn YS, Nechushtai R, Lu CH, Willner I. J Am Chem Soc, 2016, 138: 8936–8945

    Article  CAS  PubMed  Google Scholar 

  25. Chen S, Leung FKC, Stuart MCA, Wang C, Feringa BL. J Am Chem Soc, 2020, 142: 10163–10172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andréasson J, Pischel U. Coord Chem Rev, 2021, 429: 213695

    Article  Google Scholar 

  27. Du T, Qin Z, Zheng Y, Jiang H, Weizmann Y, Wang X. Chem, 2019, 5: 2942–2954

    Article  CAS  Google Scholar 

  28. Lei Q, Wang SB, Hu JJ, Lin YX, Zhu CH, Rong L, Zhang XZ. ACS Nano, 2017, 11: 7201–7214

    Article  CAS  PubMed  Google Scholar 

  29. Sun C, Su S, Gao Z, Liu H, Wu H, Shen X, Bi W. ACS Appl Mater Interfaces, 2019, 11: 8210–8216

    Article  CAS  PubMed  Google Scholar 

  30. Zhu L, Ang CY, Li X, Nguyen KT, Tan SY, Agren H, Zhao Y. Adv Mater, 2012, 24: 4020–4024

    Article  CAS  PubMed  Google Scholar 

  31. Tao M, Liang X, Guo J, Zheng S, Qi Q, Cao Z, Mi Y, Zhao Z. ACS Appl Mater Interfaces, 2021, 13: 33574–33583

    Article  CAS  PubMed  Google Scholar 

  32. Dordević L, Arcudi F, Cacioppo M, Prato M. Nat Nanotechnol, 2022, 17: 112–130

    Article  PubMed  Google Scholar 

  33. Wang B, Lu S. Matter, 2022, 5: 110–149

    Article  Google Scholar 

  34. Guo J, Lu Y, Xie A, Li G, Liang Z, Wang C, Yang X, Chen S. Adv Funct Mater, 2022, 32: 2110393

    Article  CAS  Google Scholar 

  35. Liu J, Kong T, Xiong HM. Adv Mater, 2022, 34: 2200152

    Article  CAS  Google Scholar 

  36. Olmos-Moya PM, Velazquez-Martinez S, Pineda-Arellano C, Rangel-Mendez JR, Chazaro-Ruiz LF. Carbon, 2022, 187: 216–229

    Article  CAS  Google Scholar 

  37. Chen J, Yan J, Feng Q, Miao X, Dou B, Wang P. Biosens Bioelectron, 2021, 176: 112955

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Xie Y, Song B, Zhang HL, Chen H, Cai H, Liu W, Tang Y. Angew Chem Int Ed, 2017, 56: 2689–2693

    Article  CAS  Google Scholar 

  39. Li Z, Ni J, Liu L, Gu L, Wu Z, Li T, Ivanovich KI, Zhao W, Sun T, Wang T. ACS Appl Mater Interfaces, 2021, 13: 29340–29348

    Article  CAS  PubMed  Google Scholar 

  40. Yang X, Sui L, Wang B, Zhang Y, Tang Z, Yang B, Lu S. Sci China Chem, 2021, 64: 1547–1553

    Article  CAS  Google Scholar 

  41. Wang B, Wei Z, Sui L, Yu J, Zhang B, Wang X, Feng S, Song H, Yong X, Tian Y, Yang B, Lu S. Light Sci Appl, 2022, 11: 172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang X, Ai L, Yu J, Waterhouse GIN, Sui L, Ding J, Zhang B, Yong X, Lu S. Sci Bull, 2022, doi: https://doi.org/10.1016/j.scib.2022.06.013

  43. Du J, Poelman D, Lin H. Chem Eng J, 2022, 431: 133706

    Article  CAS  Google Scholar 

  44. Du J, Lyu S, Jiang K, Huang D, Li J, Van Deun R, Poelman D, Lin H. Mater Today Chem, 2022, 24: 100906

    Article  CAS  Google Scholar 

  45. Wu H, Chen Y, Dai X, Li P, Stoddart JF, Liu Y. J Am Chem Soc, 2019, 141: 6583–6591

    Article  CAS  PubMed  Google Scholar 

  46. Jin K, Ji X, Yang T, Zhang J, Tian W, Yu J, Zhang X, Chen Z, Zhang J. Chem Eng J, 2021, 406: 126794

    Article  CAS  Google Scholar 

  47. Klajn R. Chem Soc Rev, 2014, 43: 148–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52122308, 21905253, 51973200, 52103239), the Natural Science Foundation of Henan (202300410372) and Henan Postdoctoral Foundation. GINW acknowledges funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnology and the Dodd-Walls Centre for Photonic and Quantum Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu Lu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, L., Liu, H., Liu, R. et al. Dual sensitivity of spiropyran-functionalized carbon dots for full color conversions. Sci. China Chem. 65, 2274–2282 (2022). https://doi.org/10.1007/s11426-022-1346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1346-6

Keywords

Navigation