Skip to main content
Log in

Scalable preparation and direct visualization of cyclic polymers via self-folding cyclization technique

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cyclic polymers exhibit distinct properties compared with their linear counterparts due to the lack of chain ends. However, the scalable synthesis of cyclic polymers remains a major challenge, especially for ring-closure method. Herein, we report a novel strategy for large-scale preparation of cyclic polymers, which relies on the prior self-folding of anthracene-telechelic amphiphilic random copolymers (poly((oligo(ethylene glycol) acrylate)-co-(dodecyl acrylate)), P(OEGA-co-DDA)) into single-chain polymeric nanoparticles (SCPNs) in water. Subsequent ultraviolet (UV)-induced cyclization occurs in the hydrophobic nano-domain. The formation of SCPNs leads to a shortened distance between the end groups of the linear precursors and spatially separated cyclization loci, and significantly enhances the efficiency of UV-induced cyclization. This self-folding technique permits access to the synthesis of cyclic polymers not only with high molecular weights (Mn > 105 g/mol), but also in a decent scale (40 g/L), breaking through the limitations of ring-closure method. Furthermore, the dense pendants of the copolymers can magnify the macromolecules by increasing the mass density along the backbones, thus making the polymers more readily detectable by the microscopy. The transmission electron microscopy (TEM) and atomic force microscopy (AFM) images allow us to observe the topological structures directly and provide crucial evidence to confirm the cyclization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ireland DC, Clark RJ, Daly NL, Craik DJ. J Nat Prod, 2010, 73: 1610–1622

    CAS  Google Scholar 

  2. Sprott GD. J Bioenerg Biomembr, 1992, 24: 555–566

    CAS  Google Scholar 

  3. Bielawski CW, Benitez D, Grubbs RH. Science, 2002, 297: 2041–2044

    CAS  Google Scholar 

  4. Guo L, Zhang D. J Am Chem Soc, 2009, 131: 18072–18074

    CAS  Google Scholar 

  5. Honda S, Yamamoto T, Tezuka Y. J Am Chem Soc, 2010, 132: 10251–10253

    CAS  Google Scholar 

  6. Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M. Nat Mater, 2008, 7: 997–1002

    CAS  Google Scholar 

  7. Kricheldorf HR. J Polym Sci Polym Chem, 2010, 48: 251–284

    CAS  Google Scholar 

  8. Santangelo PG, Roland CM, Chang T, Cho D, Roovers J. Macromolecules, 2001, 34: 9002–9005

    CAS  Google Scholar 

  9. Garcia Bernal JM, Tirado MM, Freire JJ, Garcia de La Torre J. Macromolecules, 1991, 24: 593–598

    CAS  Google Scholar 

  10. Pasini D. Molecules, 2013, 18: 9512–9530

    CAS  Google Scholar 

  11. Laurent BA, Grayson SM. Chem Soc Rev, 2009, 38: 2202

    CAS  Google Scholar 

  12. Jia Z, Lonsdale DE, Kulis J, Monteiro MJ. ACS Macro Lett, 2012, 1: 780–783

    CAS  Google Scholar 

  13. Culkin DA, Jeong W, Csihony S, Gomez ED, Balsara NP, Hedrick JL, Waymouth RM. Angew Chem, 2007, 119: 2681–2684

    Google Scholar 

  14. Liu C, Fei Y, Zhang H, Pan C, Hong C. Macromolecules, 2019, 52: 176–184

    CAS  Google Scholar 

  15. Schmidt BVKJ, Fechler N, Falkenhagen J, Lutz JF. Nat Chem, 2011, 3: 234–238

    CAS  Google Scholar 

  16. Sun P, Chen J, Liu J’, Zhang K. Macromolecules, 2017, 50: 1463–1472

    CAS  Google Scholar 

  17. Hoskins JN, Grayson SM. Polym Chem, 2011, 2: 289–299

    CAS  Google Scholar 

  18. Josse T, De Winter J, Gerbaux P, Coulembier O. Angew Chem Int Ed, 2016, 55: 13944–13958

    CAS  Google Scholar 

  19. Boydston AJ, Xia Y, Kornfield JA, Gorodetskaya IA, Grubbs RH. J Am Chem Soc, 2008, 130: 12775–12782

    CAS  Google Scholar 

  20. Zhang K, Lackey MA, Cui J, Tew GN. J Am Chem Soc, 2011, 133: 4140–4148

    CAS  Google Scholar 

  21. Chang YA, Waymouth RM. J Polym Sci Part A-Polym Chem, 2017, 55: 2892–2902

    CAS  Google Scholar 

  22. Haque FM, Grayson SM. Nat Chem, 2020, 12: 433–444

    CAS  Google Scholar 

  23. Flory PJ, Suter UW, Mutter M. J Am Chem Soc, 1976, 98: 5733–5739

    CAS  Google Scholar 

  24. Kricheldorf HR, Weidner SM, Scheliga F. Polym Chem, 2020, 11: 2595–2604

    CAS  Google Scholar 

  25. Koo MB, Lee SW, Lee JM, Kim KT. J Am Chem Soc, 2020, 142: 14028–14032

    CAS  Google Scholar 

  26. Huurne GM, Palmans ARA, Meijer EW. CCS Chem, 2019, 1: 64–82

    Google Scholar 

  27. Dobson CM. Nature, 2003, 426: 884–890

    CAS  Google Scholar 

  28. Chen J, Li K, Bonson SE, Zimmerman SC. J Am Chem Soc, 2020, 142: 13966–13973

    CAS  Google Scholar 

  29. Chen J, Wang J, Bai Y, Li K, Garcia ES, Ferguson AL, Zimmerman SC. J Am Chem Soc, 2018, 140: 13695–13702

    CAS  Google Scholar 

  30. Mavila S, Eivgi O, Berkovich I, Lemcoff NG. Chem Rev, 2016, 116: 878–961

    CAS  Google Scholar 

  31. Yusa SI, Sakakibara A, Yamamoto T, Morishima Y. Macromolecules, 2002, 35: 10182–10188

    CAS  Google Scholar 

  32. Cherian AE, Sun FC, Sheiko SS, Coates GW. J Am Chem Soc, 2007, 129: 11350–11351

    CAS  Google Scholar 

  33. Terashima T, Mes T, De Greef TFA, Gillissen MAJ, Besenius P, Palmans ARA, Meijer EW. J Am Chem Soc, 2011, 133: 4742–4745

    CAS  Google Scholar 

  34. Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Van Horn B, Guan Z, Chen G, Krishnan RS. Science, 2006, 311: 1740–1743

    CAS  Google Scholar 

  35. Hirai Y, Terashima T, Takenaka M, Sawamoto M. Macromolecules, 2016, 49: 5084–5091

    CAS  Google Scholar 

  36. Matsumoto M, Terashima T, Matsumoto K, Takenaka M, Sawamoto M. J Am Chem Soc, 2017, 139: 7164–7167

    CAS  Google Scholar 

  37. Hattori G, Takenaka M, Sawamoto M, Terashima T. J Am Chem Soc, 2018, 140: 8376–8379

    CAS  Google Scholar 

  38. Altintas O, Willenbacher J, Wuest KNR, Oehlenschlaeger KK, Krolla-Sidenstein P, Gliemann H, Barner-Kowollik C. Macromolecules, 2013, 46: 8092–8101

    CAS  Google Scholar 

  39. Terashima T, Sugita T, Fukae K, Sawamoto M. Macromolecules, 2014, 47: 589–600

    CAS  Google Scholar 

  40. Schappacher M, Deffieux A. Angew Chem Int Ed, 2009, 48: 5930–5933

    CAS  Google Scholar 

  41. Ouchi M, Badi N, Lutz JF, Sawamoto M. Nat Chem, 2011, 3: 917–924

    CAS  Google Scholar 

  42. Schappacher M, Deffieux A. Science, 2008, 319: 1512–1515

    CAS  Google Scholar 

  43. Yamamoto T, Yagyu S, Tezuka Y. J Am Chem Soc, 2016, 138: 3904–3911

    CAS  Google Scholar 

  44. Zhang Z, Nie X, Wang F, Chen G, Huang WQ, Xia L, Zhang WJ, Hao ZY, Hong CY, Wang LH, You YZ. Nat Commun, 2020, 11: 3654

    CAS  Google Scholar 

  45. Zhang K, Lackey MA, Wu Y, Tew GN. J Am Chem Soc, 2011, 133: 6906–6909

    CAS  Google Scholar 

  46. Kawaguchi D. Polym J, 2013, 45: 783–789

    CAS  Google Scholar 

  47. Li Z, Li Y, Zhao Y, Wang H, Zhang Y, Song B, Li X, Lu S, Hao XQ, Hla SW, Tu Y, Li X. J Am Chem Soc, 2020, 142: 6196–6205

    CAS  Google Scholar 

  48. Zhang K, Zha Y, Peng B, Chen Y, Tew GN. J Am Chem Soc, 2013, 135: 15994–15997

    CAS  Google Scholar 

  49. Pal D, Miao Z, Garrison JB, Veige AS, Sumerlin BS. Macromolecules, 2020, 53: 9717–9724

    CAS  Google Scholar 

  50. Chen J, Li H, Zhang H, Liao X, Han H, Zhang L, Sun R, Xie M. Nat Commun, 2018, 9: 5310

    CAS  Google Scholar 

  51. Zimm BH, Stockmayer WH. J Chem Phys, 1949, 17: 1301–1314

    CAS  Google Scholar 

  52. Roland CD, Li H, Abboud KA, Wagener KB, Veige AS. Nat Chem, 2016, 8: 791–796

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22201276, 22131010, 52021002) and the Fundamental Research Funds for the Central Universities (WK2060000012). The authors thank Prof. B.B. Jiang and Mr. Y.Z. Du. from Changzhou University for their assistance with GPC characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu or Chunyan Hong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zha, H., Liu, C. et al. Scalable preparation and direct visualization of cyclic polymers via self-folding cyclization technique. Sci. China Chem. 65, 2558–2566 (2022). https://doi.org/10.1007/s11426-022-1344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1344-3

Keywords

Navigation