Skip to main content
Log in

Atom engineering-regulated in situ transition of Cu(I)-Cu(II) for efficiently overcoming cancer drug resistance

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The search of highly efficient drugs for overcoming cancer drug resistance continues to be a challenge for scientists. Constructing a metal drug based in situ oxidation-state transition system to disturb the redox balance in cancer cells is a promising approach for overcoming cancer drug resistance. Inspired by natural redox-active copper enzyme centers, we developed a Cu(I)-Cu(II) in situ transition system in this work. Through atom engineering, we fine-tuned the thermodynamic stability of this system to investigate its anticancer activity The results indicated that the synthetic Cu(I)-Cu(II) system could under-go in situ transition in vitro and in vivo, to disrupt the intracellular redox balance and trigger mitochondrial dysfunction and G2/M arrest, leading to apoptosis and overcoming cancer drug resistance This study presents a feasible way to overcome cancer drug resistance by designing an in situ oxidation-state transition metal drug system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Vasan N, Baselga J, Hyman DM. Nature, 2019, 575: 299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Nat Rev Cancer, 2018, 18: 452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Cancers, 2014, 6: 1769–1792

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ruan L, Chen J, Du C, Lu H, Zhang J, Cai X, Dou R, Lin W, Chai Z, Nie G, Hu Y. Bioactive Mater, 2022, 13: 191–199

    Article  CAS  Google Scholar 

  5. Huang W, Chen Z, Hou L, Feng P, Li Y, Chen T. Dalton Trans, 2020, 49: 11556–11564

    Article  CAS  PubMed  Google Scholar 

  6. Peng K, Liang BB, Liu W, Mao ZW. Coord Chem Rev, 2021, 449: 214210

    Article  CAS  Google Scholar 

  7. Wang H, Wu H, Yi Y, Xue K, Xu J, Wang H, Zhao Y, Zhang X. CCS Chem, 2021, 3: 1413–1425

    Article  CAS  Google Scholar 

  8. Loehrer PJ, Einhorn LH. Ann Intern Med, 1984, 100: 704–713

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Lippard SJ. Nat Rev Drug Discov, 2005, 4: 307–320

    Article  CAS  PubMed  Google Scholar 

  10. Jin S, Guo Y, Guo Z, Wang X. Pharmaceuticals, 2021, 14: 133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li SH, Wu CY, Tang X, Gao SP, Zhao XQ, Yan H, Wang XM. Sci China Chem, 2013, 56: 595–603

    Article  CAS  Google Scholar 

  12. Wang Z, He L, Liu B, Zhou LP, Cai LX, Hu SJ, Li XZ, Li Z, Chen T, Li X, Sun QF. J Am Chem Soc, 2020, 142: 16409–16419

    Article  CAS  PubMed  Google Scholar 

  13. Bell CC, Fennell KA, Chan YC, Rambow F, Yeung MM, Vassiliadis D, Lara L, Yeh P, Martelotto LG, Rogiers A, Kremer BE, Barbash O, Mohammad HP, Johanson TM, Burr ML, Dhar A, Karpinich N, Tian L, Tyler DS, MacPherson L, Shi J, Pinnawala N, Yew Fong C, Papenfuss AT, Grimmond SM, Dawson SJ, Allan RS, Kruger RG, Vakoc CR, Goode DL, Naik SH, Gilan O, Lam EYN, Marine JC, Prinjha RK, Dawson MA. Nat Commun, 2019, 10: 1–5

    Article  CAS  Google Scholar 

  14. Li J, Zeng L, Wang Z, Chen H, Fang S, Wang J, Cai C, Xing E, Liao X, Li Z, AshbyJr CR, Chen Z, Chao H, Pan Y. Adv Mater, 2022, 34: 2100245

    Article  CAS  Google Scholar 

  15. Zhang C, Liu X, Jin S, Chen Y, Guo R. Mol Cancer, 2022, 21: 47

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Zhang W, Wang S, Gao Z, Luo Z, Wang X, Zeng R, Li A, Li H, Wang M, Zheng X, Zhu J, Zhang W, Ma C, Si R, Zeng J. Nat Commun, 2016, 7: 14036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Sha R, Zhang L, Zhang W, Jin P, Xu W, Ding J, Lin J, Qian J, Yao G, Zhang R, Luo F, Zeng J, Cao J, Wen LP. Nat Commun, 2018, 9: 4236

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Zhang Y, Cao J, Ma L, Chen T. Chem Commun, 2022, 58: 3759–3762

    Article  CAS  Google Scholar 

  19. Liu Z, Li T, Li N, Wang Y, Chen L, Tang X, Wan M, Mao C. Sci China Chem, 2022, 65: 989–1002

    Article  CAS  Google Scholar 

  20. Ji X, Ge L, Liu C, Tang Z, Xiao Y, Chen W, Lei Z, Gao W, Blake S, De D, Shi B, Zeng X, Kong N, Zhang X, Tao W. Nat Commun, 2021, 12: 1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie L, Wang L, Guan R, Ji L, Chao H. J Inorg Biochem, 2021, 217: 111380

    Article  CAS  PubMed  Google Scholar 

  22. Chen M, Huang X, Shi H, Lai J, Ma L, Lau TC, Chen T. Biomaterials, 2021, 276: 120991

    Article  CAS  PubMed  Google Scholar 

  23. Xia X, Wang R, Hu Y, Yao Q, Long S, Sun W, Fan J, Peng X. Sci China Chem, 2022, 65: 821–828

    Article  CAS  Google Scholar 

  24. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR. Science, 2022, 375: 1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bím D, Alexandrova AN. Chem Sci, 2021, 12: 11406–11413

    Article  PubMed  PubMed Central  Google Scholar 

  26. King JD, Mcintosh CL, Halsey CM, Lada BM, Niedzwiedzki DM, Cooley JW, Blankenship RE. Biochemistry, 2013, 52: 8267–8275

    Article  CAS  PubMed  Google Scholar 

  27. Xiang S, Liu Y. Univ Chem, 2022, 37: 2107128

    Google Scholar 

  28. Vallee BL, Williams RJP. Proc Natl Acad Sci USA, 1968, 59: 498–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rhoda HM, Heyer AJ, Snyder BER, Plessers D, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Chem Rev, 2022, 122: 12207–12243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hagen WR. Metallomics, 2019, 11: 1768–1778

    Article  CAS  PubMed  Google Scholar 

  31. Chaka G, Sonnenberg JL, Schlegel HB, Heeg MJ, Jaeger G, Nelson TJ, Ochrymowycz LA, Rorabacher DB. J Am Chem Soc, 2007, 129: 5217–5227

    Article  CAS  PubMed  Google Scholar 

  32. Cao Y, Saygili Y, Ummadisingu A, Teuscher J, Luo J, Pellet N, Giordano F, Zakeeruddin SM, Moser JE, Freitag M, Hagfeldt A, Grätzel M. Nat Commun, 2017, 8: 15390

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dicke B, Hoffmann A, Stanek J, Rampp MS, Grimm-Lebsanft B, Biebl F, Rukser D, Maerz B, Göries D, Naumova M, Biednov M, Neuber G, Wetzel A, Hofmann SM, Roedig P, Meents A, Bielecki J, Andreasson J, Beyerlein KR, Chapman HN, Bressler C, Zinth W, Rübhausen M, Herres-Pawlis S. Nat Chem, 2018, 10: 355–362

    Article  CAS  PubMed  Google Scholar 

  34. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, et al. Gaussian 09. Wallingford, CT: Gaussian Inc., 2009. 150–166

    Google Scholar 

  35. Duxbury DF. Chem Rev, 1993, 93: 381–433

    Article  CAS  Google Scholar 

  36. Becke AD. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  37. Weigend F, Ahlrichs R. Phys Chem Chem Phys, 2005, 7: 3297–3305

    Article  CAS  PubMed  Google Scholar 

  38. Zhao R, Wu Y, Zhang Y, Ling J, Liu X, Xiang J, Zeng X, Chen T. Sci China Chem, 2022, 65: 694–698

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21877049, 22177038, 32171296), Guangdong Natural Science Foundation (2020B1515120043, 2022A1515012235), the Major Program for Tackling Key Problems of Industrial Technology in Guangzhou (201902020013), Guangdong Pearl River Talent Program (2017GC010354), and the Innovation Team Project in Guangdong Colleges and Universities (2019KCXTD008, 2019KTSCX012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Ma or Tianfeng Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1340_MOESM1_ESM.pdf

Atom Engineering-Regulated In Situ Transition of Cu(I)-Cu(II) Entatic State for Efficient Overcoming Cancer Drug Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, M., Wang, J. et al. Atom engineering-regulated in situ transition of Cu(I)-Cu(II) for efficiently overcoming cancer drug resistance. Sci. China Chem. 65, 1879–1884 (2022). https://doi.org/10.1007/s11426-022-1340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1340-6

Keywords

Navigation