Skip to main content
Log in

A nickel-iron layered double hydroxide-supported Au catalyst for efficient electrocatalytic C-C coupling reaction coupled with H2 production

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Coupling of cathodic H2 production with electrosynthesis of organic compounds not only solves the problem of sluggish oxygen evolution reaction (OER) kinetics, but also produces valuable chemicals. However, this strategy has rarely been explored for direct and selective C(sp3)-H activation to construct C-C bonds, which could significantly enhance the synthetic efficiency in organic synthesis. Here, we report a nickel-iron layered double hydroxide-supported gold catalyst (Au/NiFe-LDH) for efficient electrocatalytic C-C coupling reaction in direct C(sp3)-H alkynylation of tertiary aliphatic amines with 1-iodoalkynes, which is coupled with H2 production. Specifically, triethylamine and 1-iodoalkynes undergo efficient alkynylation to afford propargylamine in high yield (79%) and recycling ability without addition of external oxidants, coupling with 78-fold higher H2 productivity compared with water splitting under the same potential. This work may shed light on OER-substituted reaction towards C-C bond formation reactions under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kibsgaard J, Chorkendorff I. Nat Energy, 2019, 4: 430–433

    Article  Google Scholar 

  2. Zhang J, Zhao Y, Guo X, Chen C, Dong CL, Liu RS, Han CP, Li Y, Gogotsi Y, Wang G. Nat Catal, 2018, 1: 985–992

    Article  CAS  Google Scholar 

  3. Fang Y, Sun D, Niu S, Cai J, Zang Y, Wu Y, Zhu L, Xie Y, Liu Y, Zhu Z, Mosallanezhad A, Niu D, Lu Z, Shi J, Liu X, Rao D, Wang G, Qian Y. Sci China Chem, 2020, 63: 1563–1569

    Article  CAS  Google Scholar 

  4. Yi JD, Liu TT, Huang YB, Cao R. Sci China Mater, 2019, 62: 965–972

    Article  CAS  Google Scholar 

  5. Qu Q, Gao X, Gao J, Yuan G. Sci China Chem, 2015, 58: 747–750

    Article  CAS  Google Scholar 

  6. Zhou H, Li Z, Ma L, Duan H. Chem Commun, 2022, 58: 897–907

    Article  CAS  Google Scholar 

  7. Song Y, Ji K, Duan H, Shao M. Exploration, 2021, 1: 20210050

    Article  Google Scholar 

  8. Chong X, Liu C, Wang C, Yang R, Zhang B. Angew Chem Int Ed, 2021, 60: 22010–22016

    Article  CAS  Google Scholar 

  9. Lee D, Kim Y, Kwon Y, Lee J, Kim TW, Noh Y, Kim WB, Seo MH, Kim K, Kim HJ. Appl Catal B-Environ, 2019, 245: 555–568

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhou B, Wei Z, Zhou W, Wang D, Tian J, Wang T, Zhao S, Liu J, Tao L, Wang S. Adv Mater, 2021, 33: 2104791

    Article  CAS  Google Scholar 

  11. Gao L, Liu Z, Ma J, Zhong L, Song Z, Xu J, Gan S, Han D, Niu L. Appl Catal B-Environ, 2020, 261: 118235

    Article  Google Scholar 

  12. Ge R, Wang Y, Li Z, Xu M, Xu SM, Zhou H, Ji K, Chen F, Zhou J, Duan H. Angew Chem Int Ed, 2022, 61: e202200211

    CAS  Google Scholar 

  13. Li Z, Yan Y, Xu SM, Zhou H, Xu M, Ma L, Shao M, Kong X, Wang B, Zheng L, Duan H. Nat Commun, 2022, 13: 147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma L, Zhou H, Xu M, Hao P, Kong X, Duan H. Chem Sci, 2020, 12: 938–945

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maachou L, Qi Z, Petit E, Qin ZD, Zhang Y, Cot D, Flaud V, Reibel C, El-Maghrbi H, Li L, Miele P, Kaplan D, Chhowalla M, Onofrio N, Voiry D. J Mater Chem A, 2020, 8: 25053–25060

    Article  CAS  Google Scholar 

  16. Peñafiel I, Dryfe RAW, Turner NJ, Greaney MF. ChemCatChem, 2021, 13: 864–867

    Article  Google Scholar 

  17. Chen C, Zhu X, Wen X, Zhou Y, Zhou L, Li H, Tao L, Li Q, Du S, Liu T, Yan D, Xie C, Zou Y, Wang Y, Chen R, Huo J, Li Y, Cheng J, Su H, Zhao X, Cheng W, Liu Q, Lin H, Luo J, Chen J, Dong M, Cheng K, Li C, Wang S. Nat Chem, 2020, 12: 717–724

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Jiang Z, Lin Z, Liang Y, Wang H. Nat Sustain, 2021, 4: 725–730

    Article  Google Scholar 

  19. Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Acc Chem Res, 2020, 53: 300–310

    Article  CAS  PubMed  Google Scholar 

  20. Truesdell BL, Hamby TB, Sevov CS. J Am Chem Soc, 2020, 142: 5884–5893

    Article  CAS  PubMed  Google Scholar 

  21. Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Chem Rev, 2021, 121: 14957–15074

    Article  CAS  PubMed  Google Scholar 

  22. Dutta U, Maiti S, Bhattacharya T, Maiti D. Science, 2021, 372: eabd5992

    Article  CAS  PubMed  Google Scholar 

  23. Liu XY, Li ZL, Wei H, Zhang ZH. Synlett, 2020, 32: 362–369

    Google Scholar 

  24. Suseelan Sarala A, Bhowmick S, Carvalho RL, Al-Thabaiti SA, Mokhtar M, SilvaJúnior EN, Maiti D. Adv Synth Catal, 2021, 363: 4994–5027

    Article  CAS  Google Scholar 

  25. Ma L, Shi X, Li X, Shi D. Org Chem Front, 2018, 5: 3515–3519

    Article  CAS  Google Scholar 

  26. Zhang X, Corma A. Angew Chem Int Ed, 2008, 47: 4358–4361

    Article  Google Scholar 

  27. Xu X, Li X. Org Lett, 2009, 11: 1027–1029

    Article  CAS  PubMed  Google Scholar 

  28. Jung ME, Huang A. Org Lett, 2000, 2: 2659–2661

    Article  CAS  PubMed  Google Scholar 

  29. Murai T, Mutoh Y, Ohta Y, Murakami M. J Am Chem Soc, 2004, 126: 5968–5969

    Article  CAS  PubMed  Google Scholar 

  30. Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi ASK. Angew Chem Int Ed, 2015, 54: 6046–6050

    Article  CAS  Google Scholar 

  31. Ye X, Wang C, Zhang S, Wei J, Shan C, Wojtas L, Xie Y, Shi X. ACS Catal, 2020, 10: 11693–11699

    Article  CAS  Google Scholar 

  32. Cao J, Li P, Xu G, Tao M, Ma N, Zhang W. Chem Eng J, 2018, 349: 456–465

    Article  CAS  Google Scholar 

  33. Munshi AM, Shi M, Thomas SP, Saunders M, Spackman MA, Iyer KS, Smith NM. Dalton Trans, 2017, 46: 5133–5137

    Article  CAS  PubMed  Google Scholar 

  34. Wei C, Li CJ. J Am Chem Soc, 2003, 125: 9584–9585

    Article  CAS  PubMed  Google Scholar 

  35. Shao M, Zhang R, Li Z, Wei M, Evans DG, Duan X. Chem Commun, 2015, 51: 15880–15893

    Article  CAS  Google Scholar 

  36. Tang Y, Liu Q, Dong L, Wu HB, Yu XY. Appl Catal B-Environ, 2020, 266: 118627

    Article  CAS  Google Scholar 

  37. Hao P, Xin Y, Tian J, Li L, Xie J, Lei F, Tong L, Liu H, Tang B. Sci China Chem, 2020, 63: 1030–1039

    Article  CAS  Google Scholar 

  38. Wang B, Huang H, Huang M, Yan P, Isimjan TT, Yang X. Sci China Chem, 2020, 63: 841–849

    Article  CAS  Google Scholar 

  39. Zhang X, Shi H, Xu BQ. Angew Chem, 2005, 117: 7294–7297

    Article  Google Scholar 

  40. McNally A, Prier CK, MacMillan DWC. Science, 2011, 334: 1114–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, Lange KM, Zhang B. J Am Chem Soc, 2018, 140: 3876–3879

    Article  CAS  PubMed  Google Scholar 

  42. Wilson KC, Lyons B, Mehlenbacher R, Sabatini R, McCamant DW. J Chem Phys, 2009, 131: 214502

    Article  PubMed  Google Scholar 

  43. Liu H, Guo Y, Wang Y, Zhang H, Ma X, Wen S, Jin J, Song W, Zhao B, Ozaki Y. J Hazard Mater, 2021, 405: 124642

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Zhang P, Jiang M, Yang H, Fu H. Org Lett, 2017, 19: 1016–1019

    Article  CAS  PubMed  Google Scholar 

  45. Legacy CJ, Wang A, O’Day BJ, Emmert MH. Angew Chem, 2015, 127: 15120–15123

    Article  Google Scholar 

  46. Boutillier P, Zard SZ. Chem Commun, 2001, 1304–1305

  47. Martelli G, Spagnolo P, Tiecco M. J Chem Soc B, 1970, 1413–1418

  48. Huang HY, Cheng L, Liu JJ, Wang D, Liu L, Li CJ. J Org Chem, 2017, 82: 2656–2663

    Article  CAS  PubMed  Google Scholar 

  49. Huang Q, Su YX, Sun W, Hu MY, Wang WN, Zhu SF. J Am Chem Soc, 2022, 144: 515–526

    Article  CAS  PubMed  Google Scholar 

  50. Tang S, Wang P, Li H, Lei A. Nat Commun, 2016, 7: 11676

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was provided by the National Natural Science Foundation of China (21978147, 21935001, 22090030, 22105015) and State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haohong Duan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2022_1339_MOESM1_ESM.docx

A Nickel-Iron Layered Double Hydroxide-Supported Au Catalyst for Efficient Electrocatalytic C-C Coupling Reaction Coupled with H2 Production

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Ma, L., Zhou, L. et al. A nickel-iron layered double hydroxide-supported Au catalyst for efficient electrocatalytic C-C coupling reaction coupled with H2 production. Sci. China Chem. 65, 2307–2317 (2022). https://doi.org/10.1007/s11426-022-1339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1339-8

Keywords

Navigation