Skip to main content
Log in

In situ rapid versatile method for the preparation of zirconium metal-organic framework filters

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of the rapid preparation of highly stable metal-organic framework (MOF)-based devices provides the possibility of meeting the increasing demands of MOF in industrial applications. However, MOFs experience poor processability and stable high-valence-metal(IV)-based MOFs favor forming either thermodynamically stable metal hydroxides or oxides during their growth and nucleation, which hinders their practical applications. Herein, we present a versatile deep eutectic solvent (DES)-assisted hot pressing method to in situ rapidly prepare six distinct zirconium-based MOF nanocrystals on fibers (denoted as Zr-MOFilters) within 20 min. A small amount of DES promotes MOF precursor contact and accelerates Zr-MOF growth. Temperature and pressure facilitate the formation of Zr-MOFs onto desired substrates. In situ1H nuclear magnetic resonance spectra and time-dependent Fourier-transform infrared spectra were conducted to elucidate the growth of Zr-MOF nanocrystals. As a proof-of-concept, the abilities of Zr-MOFilters for Cr2O 2−7 and micro(nano) plastics removal have been demonstrated. This strategy paves the way for the rapid fabrication of highly stable MOF-based devices and brings MOFs a step closer to practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444

    Google Scholar 

  2. Kitagawa S, Kitaura R, Noro S. Angew Chem Int Ed, 2004, 43: 2334–2375

    CAS  Google Scholar 

  3. Zhang WH, Yin MJ, Zhao Q, Jin CG, Wang N, Ji S, Ritt CL, Elimelech M, An QF. Nat Nanotechnol, 2021, 16: 337–343

    Google Scholar 

  4. Denny MS, Moreton JC, Benz L, Cohen SM. Nat Rev Mater, 2016, 1: 1–17

    Google Scholar 

  5. Liu G, Chernikova V, Liu Y, Zhang K, Belmabkhout Y, Shekhah O, Zhang C, Yi S, Eddaoudi M, Koros WJ. Nat Mater, 2018, 17: 283–289

    CAS  Google Scholar 

  6. Wang DG, Liang Z, Gao S, Qu C, Zou R. Coord Chem Rev, 2020, 404: 213093

    CAS  Google Scholar 

  7. Morris RE, Bu X. Nat Chem, 2010, 2: 353–361

    CAS  Google Scholar 

  8. Trickett CA, Osborn Popp TM, Su J, Yan C, Weisberg J, Huq A, Urban P, Jiang J, Kalmutzki MJ, Liu Q, Baek J, Head-Gordon MP, Somorjai GA, Reimer JA, Yaghi OM. Nat Chem, 2019, 11: 170–176

    CAS  Google Scholar 

  9. Devic T, Serre C. Chem Soc Rev, 2014, 43: 6097–6115

    CAS  Google Scholar 

  10. Tan K, Pandey H, Wang H, Velasco E, Wang KY, Zhou HC, Li J, Thonhauser T. J Am Chem Soc, 2021, 143: 6328–6332

    CAS  Google Scholar 

  11. Zhou S, Shekhah O, Jia J, Czaban-Jóźwiak J, Bhatt PM, Ramírez A, Gascon J, Eddaoudi M. Nat Energy, 2021, 6: 882–891

    CAS  Google Scholar 

  12. Dai S, Nouar F, Zhang S, Tissot A, Serre C. Angew Chem Int Ed, 2021, 60: 4282–4288

    CAS  Google Scholar 

  13. Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Chem Soc Rev, 2016, 45: 2327–2367

    CAS  Google Scholar 

  14. Feng L, Wang KY, Day GS, Zhou HC. Chem Soc Rev, 2019, 48: 4823–4853

    CAS  Google Scholar 

  15. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP. Chem Mater, 2010, 22: 6632–6640

    CAS  Google Scholar 

  16. Firth FCN, Gaultois MW, Wu Y, Stratford JM, Keeble DS, Grey CP, Cliffe MJ. J Am Chem Soc, 2021, 143: 19668–19683

    CAS  Google Scholar 

  17. Jeong GY, Singh AK, Kim MG, Gyak KW, Ryu UJ, Choi KM, Kim DP. Nat Commun, 2018, 9: 3968

    Google Scholar 

  18. Wang H, Rassu P, Wang X, Li H, Wang X, Wang X, Feng X, Yin A, Li P, Jin X, Chen SL, Ma X, Wang B. Angew Chem Int Ed, 2018, 57: 16416–16420

    CAS  Google Scholar 

  19. Rong R, Sun Y, Ji T, Liu Y. J Membrane Sci, 2020, 610: 118275

    CAS  Google Scholar 

  20. Chernikova V, Shekhah O, Spanopoulos I, Trikalitis PN, Eddaoudi M. Chem Commun, 2017, 53: 6191–6194

    CAS  Google Scholar 

  21. Virmani E, Rotter JM, Mähringer A, von Zons T, Godt A, Bein T, Wuttke S, Medina DD. J Am Chem Soc, 2018, 140: 4812–4819

    CAS  Google Scholar 

  22. Wang H, Zhao S, Liu Y, Yao R, Wang X, Cao Y, Ma D, Zou M, Cao A, Feng X, Wang B. Nat Commun, 2019, 10: 4204

    Google Scholar 

  23. Li X, Zhang H, Hou J, Ou R, Zhu Y, Zhao C, Qian T, Easton CD, Selomulya C, Hill MR, Wang H. J Am Chem Soc, 2020,: jacs.0c03554

  24. Lu J, Zhang H, Hou J, Li X, Hu X, Hu Y, Easton CD, Li Q, Sun C, Thornton AW, Hill MR, Zhang X, Jiang G, Liu JZ, Hill AJ, Freeman BD, Jiang L, Wang H. Nat Mater, 2020, 19: 767–774

    CAS  Google Scholar 

  25. Srimuk P, Su X, Yoon J, Aurbach D, Presser V. Nat Rev Mater, 2020, 5: 517–538

    CAS  Google Scholar 

  26. Zhang Y, Feng X, Li H, Chen Y, Zhao J, Wang S, Wang L, Wang B. Angew Chem Int Ed, 2015, 54: 4259–4263

    CAS  Google Scholar 

  27. Chen Y, Zhang S, Cao S, Li S, Chen F, Yuan S, Xu C, Zhou J, Feng X, Ma X, Wang B. Adv Mater, 2017, 29: 1606221

    Google Scholar 

  28. Chen Y, Li S, Pei X, Zhou J, Feng X, Zhang S, Cheng Y, Li H, Han R, Wang B. Angew Chem Int Ed, 2016, 55: 3419–3423

    CAS  Google Scholar 

  29. Amarasekara AS. Chem Rev, 2016, 116: 6133–6183

    CAS  Google Scholar 

  30. Freudenmann D, Wolf S, Wolff M, Feldmann C. Angew Chem Int Ed, 2011, 50: 11050–11060

    CAS  Google Scholar 

  31. Yoshida Y, Fujie K, Lim DW, Ikeda R, Kitagawa H. Angew Chem Int Ed, 2019, 58: 10909–10913

    CAS  Google Scholar 

  32. Zhang J, Chen S, Bu X. Angew Chem Int Ed, 2008, 47: 5434–5437

    CAS  Google Scholar 

  33. Sang X, Zhang J, Xiang J, Cui J, Zheng L, Zhang J, Wu Z, Li Z, Mo G, Xu Y, Song J, Liu C, Tan X, Luo T, Zhang B, Han B. Nat Commun, 2017, 8: 175

    Google Scholar 

  34. Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. Chem Soc Rev, 2012, 41: 7108–7146

    CAS  Google Scholar 

  35. Smith EL, Abbott AP, Ryder KS. Chem Rev, 2014, 114: 11060–11082

    CAS  Google Scholar 

  36. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Chem Commun, 2003,: 70–71

  37. Zhang J, Wu T, Chen S, Feng P, Bu X. Angew Chem Int Ed, 2009, 48: 3486–3490

    CAS  Google Scholar 

  38. Meng Y, Chen YC, Zhang ZM, Lin ZJ, Tong ML. Inorg Chem, 2014, 53: 9052–9057

    CAS  Google Scholar 

  39. Albayati N, Kadhom M. Micro Nano Lett, 2020, 15: 1075–1078

    Google Scholar 

  40. Severin KG, Ledford JS, Torgerson BA, Berglund KA. Chem Mater, 1994, 6: 890–898

    CAS  Google Scholar 

  41. Wang Y, Li L, Dai P, Yan L, Cao L, Gu X, Zhao X. J Mater Chem A, 2017, 5: 22372–22379

    CAS  Google Scholar 

  42. Chen CH, Goldberga I, Gaveau P, Mittelette S, Špačková J, Mullen C, Petit I, Métro TX, Alonso B, Gervais C, Laurencin D. Magn Reson Chem, 2021, 59: 975–990

    CAS  Google Scholar 

  43. Xu J, Terskikh VV, Chu Y, Zheng A, Huang Y. Chem Mater, 2015, 27: 3306–3316

    CAS  Google Scholar 

  44. Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C. Chem Mater, 2011, 23: 1700–1718

    CAS  Google Scholar 

  45. Yang F, Wu M, Wang Y, Ashtiani S, Jiang H. ACS Appl Mater Interfaces, 2019, 11: 990–997

    CAS  Google Scholar 

  46. Mitrano DM, Wohlleben W. Nat Commun, 2020, 11: 5324

    CAS  Google Scholar 

  47. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russell AE. Science, 2004, 304: 838

    CAS  Google Scholar 

  48. Ranjan VP, Joseph A, Goel S. J Hazard Mater, 2021, 404: 124118

    CAS  Google Scholar 

  49. Zhang H, Liu FF, Wang SC, Huang TY, Li MR, Zhu ZL, Liu GZ. Environ Pollution, 2020, 262: 114347

    CAS  Google Scholar 

  50. Zheng M, Zhao X, Wang K, She Y, Gao Z. Ind Eng Chem Res, 2019, 58: 23330–23337

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Ben Xu’s help on the time-dependent FTIR tests. This work was supported by the National Natural Science Foundation of China (22105226, 51972342, 51972345, 22171287), Shandong Province Postdoctoral Innovative Talent Support Program (SDBX20200004), the China Postdoctoral Science Foundation (2020M682253), Qingdao Postdoctoral Funding Project (ZX20210067), the Independent Innovation Scientific Research Project (20CX06100A, 21CX06002A), Taishan Scholar Project of Shandong Province (ts20190922, tsqn202103046), and the Natural Science Foundation of Shanxi Province (20210302123325).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Wang, Zhuangjun Fan or Bo Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, X., Yao, R. et al. In situ rapid versatile method for the preparation of zirconium metal-organic framework filters. Sci. China Chem. 65, 2462–2467 (2022). https://doi.org/10.1007/s11426-022-1338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1338-6

Keywords

Navigation