Skip to main content
Log in

Stereodivergently asymmetric synthesis of chiral phosphorus compounds by synergistic combination of ion-pair catalyst and base

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Stereodivergently constructing the designed products having adjacent multi-stereocenters via a given reaction, with excellent control of both absolute and relative configurations, presents one of the substantial hurdles in asymmetric catalysis. Herein, we report a precisely stereodivergent asymmetric protocol by synergistic combination of phosphonium-involved ion-pair catalysis and base for accessing to chiral phosphorus compounds bearing two adjacent chiral centers particularly containing an acidic protonated enantioenriched carbon atom, having broad functional group compatibility in both dynamic and thermodynamic processes under mild reaction conditions. Two keys for the success in constructing these stereoisomers with high levels of regio-, diastereo-, and enantioselectivities were contained: firstly, the precise stereo-control in providing dynamic products was enabled by bifunctional phosphonium salt catalyst with semi-enclosed cavity; secondly, the readily stereospecific transformation of adducts from dynamic to thermodynamic version was initiated by achiral base. All four stereoisomers could be readily accessed even in gram-scale in high yields with maintaining excellent stereoselectivities, illustrating the potential of this synergistic catalytic methodology in organic synthesis. Moreover, mechanistic studies including density functional theory (DFT) calculations and control experiments provide insights into the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selected reviews, see (a) Lin L, Feng X. Chem Eur J, 2017, 23: 6464–6482

    CAS  Google Scholar 

  2. Krautwald S, Carreira EM. J Am Chem Soc, 2017, 139: 5627–5639

    CAS  Google Scholar 

  3. Beletskaya IP, Nájera C, Yus M. Chem Rev, 2018, 118: 5080–5200

    CAS  Google Scholar 

  4. Cao W, Feng X, Liu X. Org Biomol Chem, 2019, 17: 6538–6550

    CAS  Google Scholar 

  5. Uraguchi D, Yoshioka K, Ooi T. Nat Commun, 2017, 8: 14793–14805

    Google Scholar 

  6. Shi SL, Wong ZL, Buchwald SL. Nature, 2016, 532: 353–356

    CAS  Google Scholar 

  7. Cheng Q, Zhang F, Cai Y, Guo YL, You SL. Angew Chem Int Ed, 2018, 57: 2134–2138

    CAS  Google Scholar 

  8. Wu HM, Zhang Z, Xiao F, Wei L, Dong XQ, Wang CJ. Org Lett, 2020, 22: 4852–4857

    CAS  Google Scholar 

  9. He R, Huo X, Zhao L, Wang F, Jiang L, Liao J, Zhang W. J Am Chem Soc, 2020, 142: 8097–8103

    CAS  Google Scholar 

  10. Li X, Hall DG. J Am Chem Soc, 2020, 142: 9063–9069

    CAS  Google Scholar 

  11. Selected recent examples by metal catalysis: (a) Xia J, Hirai T, Katayama S, Nagae H, Zhang W, Mashima K. ACS Catal, 2021, 11: 6643–6655

    CAS  Google Scholar 

  12. Zhu DX, Liu JG, Xu MH. J Am Chem Soc, 2021, 143: 8583–8589

    CAS  Google Scholar 

  13. Xiao L, Wei L, Wang CJ. Angew Chem Int Ed, 2021, 60: 24930–24940

    CAS  Google Scholar 

  14. Peng Y, Huo X, Luo Y, Wu L, Zhang W. Angew Chem Int Ed, 2021, 60: 24941–24949

    CAS  Google Scholar 

  15. Xiao L, Li B, Xiao F, Fu C, Wei L, Dang Y, Dong XQ, Wang CJ. Chem Sci, 2022, 13: 4801–4812

    CAS  Google Scholar 

  16. Changotra A, Bhaskararao B, Hadad CM, Sunoj RB. J Am Chem Soc, 2020, 142: 9612–9624

    CAS  Google Scholar 

  17. Xu SM, Wei L, Shen C, Xiao L, Tao HY, Wang CJ. Nat Commun, 2019, 10: 5553

    Google Scholar 

  18. Wei L, Zhu Q, Xu SM, Chang X, Wang CJ. J Am Chem Soc, 2018, 140: 1508–1513

    CAS  Google Scholar 

  19. Selected recent examples by organocatalysis: (a) Amatov T, Tsuji N, Maji R, Schreyer L, Zhou H, Leutzsch M, List B. J Am Chem Soc, 2021, 143: 14475–14481

    CAS  Google Scholar 

  20. Bing JA, Schley ND, Johnston JN. Chem Sci, 2022, 13: 2614–2623

    CAS  Google Scholar 

  21. Xie S, He ZJ, Zhang LH, Huang BL, Chen XW, Zhan ZS, Zhang FM. Chem Commun, 2021, 57: 2069–2072

    CAS  Google Scholar 

  22. Ding PG, Zhou F, Wang X, Zhao QH, Yu JS, Zhou J. Chem Sci, 2020, 11: 3852–3861

    CAS  Google Scholar 

  23. Corti V, Riccioli R, Martinelli A, Sandri S, Fochi M, Bernardi L. Chem Sci, 2021, 12: 10233–10241

    CAS  Google Scholar 

  24. Engel R. Chem Rev, 1977, 77: 349–367

    CAS  Google Scholar 

  25. Seto H, Kuzuyama T, Seto H, Kuzuyama T. Nat Prod Rep, 1999, 16: 589–596

    CAS  Google Scholar 

  26. Boëdec A, Sicard H, Dessolin J, Herbette G, Ingoure S, Raymond C, Belmant C, Kraus JL. J Med Chem, 2008, 51: 1747–1754

    Google Scholar 

  27. Lam KH, Gambari R, Yuen MCW, Kan CW, Chan P, Xu L, Tang W, Chui CH, Cheng GYM, Wong RSM, Lau FY, Tong CSW, Chan AKW, Lai PBS, Kok SHL, Cheng CH, Chan ASC, Tang JCO. Bioorg Med Chem Lett, 2009, 19: 2266–2269

    CAS  Google Scholar 

  28. Alexandre FR, Amador A, Bot S, Caillet C, Convard T, Jakubik J, Musiu C, Poddesu B, Vargiu L, Liuzzi M, Roland A, Seifer M, Standring D, Storer R, Dousson CB. J Med Chem, 2011, 54: 392–395

    CAS  Google Scholar 

  29. Zhu SF, Zhou QL. Acc Chem Res, 2017, 50: 988–1001

    CAS  Google Scholar 

  30. Schreyer L, Properzi R, List B. Angew Chem Int Ed, 2019, 58: 12761–12777; For reviews, see

    CAS  Google Scholar 

  31. Helmchen G, Pfaltz A. Acc Chem Res, 2000, 33: 336–345

    CAS  Google Scholar 

  32. Lu X, Zhang C, Xu Z. Acc Chem Res, 2001, 34: 535–544

    CAS  Google Scholar 

  33. Tang W, Zhang X. Chem Rev, 2003, 103: 3029–3070

    CAS  Google Scholar 

  34. Methot JL, Roush WR. Adv Synthesis Catal, 2004, 346: 1035–1050

    CAS  Google Scholar 

  35. Weaver JD, Recio Iii A, Grenning AJ, Tunge JA. Chem Rev, 2011, 111: 1846–1913

    CAS  Google Scholar 

  36. For selected reviews, see: (a) Merino P, Marqués-López E, Herrera R. Adv Synth Catal, 2008, 350: 1195–1208

    CAS  Google Scholar 

  37. Zhao D, Wang R. Chem Soc Rev, 2012, 41: 2095–2108

    CAS  Google Scholar 

  38. Rulev AY. RSC Adv, 2014, 4: 26002–26012

    CAS  Google Scholar 

  39. Li Z, Duan W. Chin J Org Chem, 2016, 36: 1805–1813

    CAS  Google Scholar 

  40. Albrecht Å, Albrecht A, Krawczyk H, Jórgensen KA. Chem Eur J, 2010, 16: 28–48

    CAS  Google Scholar 

  41. For selected examples: (a) Terada M, Ikehara T, Ube H. J Am Chem Soc, 2007, 129: 14112–14113

    CAS  Google Scholar 

  42. Zhu Y, Malerich JP, Rawal VH. Angew Chem Int Ed, 2010, 49: 153–156

    CAS  Google Scholar 

  43. Uraguchi D, Ito T, Ooi T. J Am Chem Soc, 2009, 131: 3836–3837

    CAS  Google Scholar 

  44. Uraguchi D, Ito T, Nakamura S, Ooi T. Chem Sci, 2010, 1: 488–490

    CAS  Google Scholar 

  45. Li K, Lv Y, Lu Z, Yun X, Yan S. Green Synth Catal, 2022, 3: 59–68

    Google Scholar 

  46. Xiong T, Yuan H, Yang F, Jiang J. Green Synth Catal, 2022, 3: 46–52

    Google Scholar 

  47. Ying S, Huang X, Guo X, Yang S. Green Synth Catal, 2021, 2: 315–319

    Google Scholar 

  48. For selected examples, see: (a) Carlone A, Bartoli G, Bosco M, Sambri L, Melchiorre P. Angew Chem Int Ed, 2007, 46: 4504–4506

    CAS  Google Scholar 

  49. Ibrahem I, Rios R, Vesely J, Hammar P, Eriksson L, Himo F, Córdova A. Angew Chem Int Ed, 2007, 46: 4507–4510

    CAS  Google Scholar 

  50. Maerten E, Cabrera S, Kjaersgaard A, Jørgensen KA. J Org Chem, 2007, 72: 8893–8903

    CAS  Google Scholar 

  51. Ibrahem I, Hammar P, Vesely J, Rios R, Eriksson L, Córdova A. Adv Synth Catal, 2008, 350: 1875–1884

    CAS  Google Scholar 

  52. Albrecht Ł, Richter B, Vila C, Krawczyk H, Jørgensen KA. Chem Eur J, 2009, 15: 3093–3102

    CAS  Google Scholar 

  53. Zhang H, Yan H, Dong L. Astrophys J, 2015, 804: 142–145

    Google Scholar 

  54. Huang H, Kang JY. Org Lett, 2016, 18: 4372–4375

    CAS  Google Scholar 

  55. Shao N, Luo YY, Lu HJ, Hua YZ, Wang MC. Tetrahedron, 2018, 74: 2130–2142

    CAS  Google Scholar 

  56. Gu X, Yuan H, Jiang J, Wu Y, Bai WJ. Org Lett, 2018, 20: 7229–7233

    CAS  Google Scholar 

  57. Hayashi M, Nakamura S. Angew Chem Int Ed, 2011, 50: 2249–2252

    CAS  Google Scholar 

  58. Ooi T, Ohara D, Tamura M, Maruoka K. J Am Chem Soc, 2004, 126: 6844–6845

    CAS  Google Scholar 

  59. Lu SM, Bolm C. Angew Chem Int Ed, 2008, 47: 8920–8923

    CAS  Google Scholar 

  60. Tian X, Cassani C, Liu Y, Moran A, Urakawa A, Galzerano P, Arceo E, Melchiorre P. J Am Chem Soc, 2011, 133: 17934–17941

    CAS  Google Scholar 

  61. Liu X, Han Z, Wang Z, Ding K. Angew Chem Int Ed, 2014, 53: 1978–1982

    CAS  Google Scholar 

  62. Lin N, Long X, Chen Q, Zhu W, Wang B, Chen K, Jiang C, Weng J, Lu G. Tetrahedron, 2018, 74: 3734–3741

    CAS  Google Scholar 

  63. Gao B, Feng X, Meng W, Du H. Angew Chem Int Ed, 2020, 59: 4498–4504

    CAS  Google Scholar 

  64. Yoshikawa N, Kumagai N, Matsunaga S, Moll G, Ohshima T, Suzuki T, Shibasaki M. J Am Chem Soc, 2001, 123: 2466–2467

    CAS  Google Scholar 

  65. Johnson JS. Angew Chem Int Ed, 2004, 43: 1326–1328

    CAS  Google Scholar 

  66. Kano T, Yamaguchi Y, Tanaka Y, Maruoka K. Angew Chem Int Ed, 2007, 46: 1738–1740

    CAS  Google Scholar 

  67. Denmark SE, Chung W. Angew Chem Int Ed, 2008, 47: 1890–1892

    CAS  Google Scholar 

  68. Li W, Wang J, Hu X, Shen K, Wang W, Chu Y, Lin L, Liu X, Feng X. J Am Chem Soc, 2010, 132: 8532–8533

    CAS  Google Scholar 

  69. Skucas E, MacMillan DWC. J Am Chem Soc, 2012, 134: 9090–9093

    CAS  Google Scholar 

  70. Roudier M, Constantieux T, Quintard A, Rodriguez J. ACS Catal, 2016, 6: 5236–5244

    CAS  Google Scholar 

  71. Selected reviews: (a) Werner T. Adv Synth Catal, 2009, 351: 1469–1481

    CAS  Google Scholar 

  72. Enders D, Nguyen TV. Org Biomol Chem, 2012, 10: 5327–5331

    CAS  Google Scholar 

  73. Liu S, Kumatabara Y, Shirakawa S. Green Chem, 2016, 18: 331–341

    CAS  Google Scholar 

  74. Golandaj A, Ahmad A, Ramjugernath D. Adv Synth Catal, 2017, 359: 3676–3706

    CAS  Google Scholar 

  75. Wang H, Zheng C, Zhao G. Chin J Chem, 2019, 37: 1111–1119

    CAS  Google Scholar 

  76. Li H, Liu H, Guo H. Adv Synth Catal, 2021, 363: 2023–2036

    CAS  Google Scholar 

  77. Pan J, Wu JH, Zhang H, Ren X, Tan JP, Zhu L, Zhang HS, Jiang C, Wang T. Angew Chem Int Ed, 2019, 58: 7425–7430

    CAS  Google Scholar 

  78. Tan JP, Yu P, Wu JH, Chen Y, Pan J, Jiang C, Ren X, Zhang HS, Wang T. Org Lett, 2019, 21: 7298–7302

    CAS  Google Scholar 

  79. Tan JP, Zhang H, Jiang Z, Chen Y, Ren X, Jiang C, Wang T. Adv Synth Catal, 2020, 362: 1058–1063

    CAS  Google Scholar 

  80. Liu X, Lu D, Wu JH, Tan JP, Jiang C, Gao G, Wang T. Adv Synth Catal, 2020, 362: 1490–1495

    CAS  Google Scholar 

  81. Lu D, Liu X, Wu JH, Zhang S, Tan JP, Yu X, Wang T. Adv Synth Catal, 2020, 362: 1966–1971

    CAS  Google Scholar 

  82. Chen Y, Yu Z, Jiang Z, Tan JP, Wu JH, Lan Y, Ren X, Wang T. ACS Catal, 2021, 11: 14168–14180

    CAS  Google Scholar 

  83. Zhang S, Yu X, Pan J, Jiang C, Zhang H, Wang T. Org Chem Front, 2019, 6: 3799–3803

    CAS  Google Scholar 

  84. Zhu L, Ren X, Liao Z, Pan J, Jiang C, Wang T. Org Lett, 2019, 21: 8667–8672

    CAS  Google Scholar 

  85. Wu JH, Pan J, Du J, Wang X, Wang X, Jiang C, Wang T. Org Lett, 2020, 22: 395–399

    CAS  Google Scholar 

  86. Du J, Wu JH, Zhu L, Ren X, Jiang C, Wang T. Adv Synth Catal, 2020, 362: 2510–2516

    CAS  Google Scholar 

  87. Tan JP, Li X, Chen Y, Rong X, Zhu L, Jiang C, Xiao K, Wang T. Sci China Chem, 2020, 63: 1091–1099

    CAS  Google Scholar 

  88. Wei DG, Yang GF, Wan J, Zhan CG. J Agric Food Chem, 2005, 53: 1604–1611

    CAS  Google Scholar 

  89. Lan JS, Xie SS, Huang M, Hu YJ, Kong LY, Wang XB. MedChemComm, 2015, 6: 1293–1302

    CAS  Google Scholar 

  90. The CCDC 2101188, 2106750, 2106511, 2100915 contain the supplementary crystallographic data for product 3a, 4a, 3a′ and 4a′ in this work, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971165, 21921002), the National Key R&D Program of China (2018YFA0903500), the “1000-Youth Talents Program” (YJ201702), the Fundamental Research Funds from Sichuan University (2020SCUNL108), Beijing National Laboratory for Molecular Sciences (BNLMS202101), and the Fundamental Research Funds for the Central Universities. We also acknowledge the comprehensive training platform of the Specialized Laboratory in the College of Chemistry at Sichuan University and the Analysis and Testing Center of Sichuan University for compound testing. Particularly we greatly thank Dr. Jing Li for HRMS testing, and also thank Dr. Dongyan Deng for NMR testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianli Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, HL., Ren, X., He, J. et al. Stereodivergently asymmetric synthesis of chiral phosphorus compounds by synergistic combination of ion-pair catalyst and base. Sci. China Chem. 65, 2500–2511 (2022). https://doi.org/10.1007/s11426-022-1337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1337-3

Keywords

Navigation