Skip to main content
Log in

Recent advances in metal-organic frameworks for X-ray detection

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) are a class of fascinating supramolecular crystalline materials that have been widely developed for catalysis, gas storage, illumination, drug delivery/cytoprotection, and so on. Recently, MOFs have been found to have potential applications in X-ray detection due to their high sensitivity, fast response time, high absorption coefficient, and radiation stability. In this review, we present an overview on the fundamental mechanism of using MOFs for X-ray scintillation. We further discuss the recent developments in X-ray detection based on indirect X-ray scintillation and direct X-ray conversion. Finally, we provide a summary and a perspective on the future of this promising research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT. Chem Soc Rev, 2009, 38: 1330–1352

    CAS  Google Scholar 

  2. Zhou HC, Kitagawa S. Chem Soc Rev, 2014, 43: 5415–5418

    CAS  Google Scholar 

  3. Zhou HC, Long JR, Yaghi OM. Chem Rev, 2012, 112: 673–674

    CAS  Google Scholar 

  4. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Nature, 1999, 402: 276–279

    CAS  Google Scholar 

  5. Yang P, Zhao W, Shkurenko A, Belmabkhout Y, Eddaoudi M, Dong X, Alshareef HN, Khashab NM. J Am Chem Soc, 2019, 141: 1847–1851

    CAS  Google Scholar 

  6. Zhang MD, Si DH, Yi JD, Yin Q, Huang YB, Cao R. Sci China Chem, 2021, 64: 1332–1339

    CAS  Google Scholar 

  7. Wu Y, Li Y, Gao J, Zhang Q. SusMat, 2021, 1: 66–87

    Google Scholar 

  8. Wang H, Zheng F, Xue G, Wang Y, Li G, Tang Z. Sci China Chem, 2021, 64: 1854–1874

    CAS  Google Scholar 

  9. Mehra S, Polisetti V, Damarla K, Ray P, Kumar A. ACS Appl Mater Interfaces, 2021, 13: 41249–41261

    Google Scholar 

  10. Cui Y, Yue Y, Qian G, Chen B. Chem Rev, 2012, 112: 1126–1162

    CAS  Google Scholar 

  11. Usman M, Mendiratta S, Lu KL. Adv Mater, 2017, 29: 1605071

    Google Scholar 

  12. Li C, Wang K, Li J, Zhang Q. ACS Mater Lett, 2020, 2: 779–797

    CAS  Google Scholar 

  13. Wu Z, Adekoya D, Huang X, Kiefel MJ, Xie J, Xu W, Zhang Q, Zhu D, Zhang S. ACS Nano, 2020, 14: 12016–12026

    CAS  Google Scholar 

  14. Feng R, Li ZY, Yao ZQ, Guo ZA, Zhang YN, Sun HX, Li W, Bu XH. Sci China Chem, 2022, 65: 128–134

    CAS  Google Scholar 

  15. Gumilar G, Kaneti YV, Henzie J, Chatterjee S, Na J, Yuliarto B, Nugraha N, Patah A, Bhaumik A, Yamauchi Y. Chem Sci, 2020, 11: 3644–3655

    CAS  Google Scholar 

  16. Nivetha R, Gothandapani K, Raghavan V, Van Le Q, Pitchaimuthu S, Muthuramamoorty M, Pandiaraj S, Alodhayb A, Kwan Jeong S, Nirmala Grace A. ChemCatChem, 2021, 13: 4342–4349

    CAS  Google Scholar 

  17. Song X, Liu J, Zhang T, Chen L. Sci China Chem, 2020, 63: 1391–1401

    CAS  Google Scholar 

  18. Wang C, Volotskova O, Lu K, Ahmad M, Sun C, Xing L, Lin W. J Am Chem Soc, 2014, 136: 6171–6174

    CAS  Google Scholar 

  19. Wang Y, Liu X, Li X, Zhai F, Yan S, Liu N, Chai Z, Xu Y, Ouyang X, Wang S. J Am Chem Soc, 2019, 141: 8030–8034

    CAS  Google Scholar 

  20. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Chem Soc Rev, 2017, 46: 3242–3285

    CAS  Google Scholar 

  21. Cong C, Ma H. Adv Opt Mater, 2021, 9: 2100733

    CAS  Google Scholar 

  22. Deng X, Zheng SL, Zhong YH, Hu J, Chung LH, He J. Coord Chem Rev, 2022, 450: 214235

    CAS  Google Scholar 

  23. Ou X, Chen X, Xu X, Xie L, Chen X, Hong Z, Bai H, Liu X, Chen Q, Li L, Yang H. Research, 2021, 2021: 9892152

    CAS  Google Scholar 

  24. Chen M, Wang C, Hu W. J Mater Chem C, 2021, 9: 4709–4729

    CAS  Google Scholar 

  25. Kakavelakis G, Gedda M, Panagiotopoulos A, Kymakis E, Anthopoulos TD, Petridis K. Adv Sci, 2020, 7: 2002098

    CAS  Google Scholar 

  26. Xie L, Hong Z, Zan J, Wu Q, Yang Z, Chen X, Ou X, Song X, He Y, Li J, Chen Q, Yang H. Adv Mater, 2021, 33: 2101852

    CAS  Google Scholar 

  27. Zhou F, Li Z, Lan W, Wang Q, Ding L, Jin Z. Small Methods, 2020, 4: 2000506

    CAS  Google Scholar 

  28. Maddalena F, Tjahjana L, Xie A, Arramel A, Zeng S, Wang H, Coquet P, Drozdowski W, Dujardin C, Dang C, Birowosuto M. Crystals, 2019, 9: 88

    Google Scholar 

  29. Hajagos TJ, Liu C, Cherepy NJ, Pei Q. Adv Mater, 2018, 30: 1706956

    Google Scholar 

  30. Zhou Y, Chen J, Bakr OM, Mohammed OF. ACS Energy Lett, 2021, 6: 739–768

    CAS  Google Scholar 

  31. Perego J, Villa I, Pedrini A, Padovani EC, Crapanzano R, Vedda A, Dujardin C, Bezuidenhout CX, Bracco S, Sozzani PE, Comotti A, Gironi L, Beretta M, Salomoni M, Kratochwil N, Gundacker S, Auffray E, Meinardi F, Monguzzi A. Nat Photon, 2021, 15: 393–400

    CAS  Google Scholar 

  32. Doty FP, Bauer CA, Skulan AJ, Grant PG, Allendorf MD. Adv Mater, 2009, 21: 95–101

    CAS  Google Scholar 

  33. Wang Y, Yin X, Liu W, Xie J, Chen J, Silver MA, Sheng D, Chen L, Diwu J, Liu N, Chai Z, Albrecht-Schmitt TE, Wang S. Angew Chem Int Ed, 2018, 57: 7883–7887

    CAS  Google Scholar 

  34. Neufeld MJ, Winter H, Landry MR, Goforth AM, Khan S, Pratx G, Sun C. ACS Appl Mater Interfaces, 2020, 12: 26943–26954

    CAS  Google Scholar 

  35. Gao X, Zhao L, Ding M, Wang X, Zhai L, Ren X. Chin Chem Lett, 2021, 32: 2423–2426

    CAS  Google Scholar 

  36. Wu L, Yao S, Xu H, Zheng T, Liu S, Chen J, Li N, Wen H. Chin Chem Lett, 2022, 33: 541–546

    CAS  Google Scholar 

  37. Nikl M. Meas Sci Technol, 2006, 17: R37–R54

    CAS  Google Scholar 

  38. Thirimanne HM, Jayawardena KDGI, Parnell AJ, Bandara RMI, Karalasingam A, Pani S, Huerdler JE, Lidzey DG, Tedde SF, Nisbet A, Mills CA, Silva SRP. Nat Commun, 2018, 9: 2926

    CAS  Google Scholar 

  39. Wei H, Huang J. Nat Commun, 2019, 10: 1066

    Google Scholar 

  40. Gao L, Yan Q. Sol RRL, 2019, 4: 1900210

    Google Scholar 

  41. Zhuang R, Wang X, Ma W, Wu Y, Chen X, Tang L, Zhu H, Liu J, Wu L, Zhou W, Liu X, Yang YM. Nat Photon, 2019, 13: 602–608

    CAS  Google Scholar 

  42. Xiang L, Huang X, Wang Y, Xin Z, Chai G, Xu Y, Wang K, Chen J, Liu C, Wang X, Zhang S, Zhou H. Org Electron, 2021, 98: 106306

    CAS  Google Scholar 

  43. Yaghi OM, Li H. J Am Chem Soc, 1995, 117: 10401–10402

    CAS  Google Scholar 

  44. McKinstry C, Cathcart RJ, Cussen EJ, Fletcher AJ, Patwardhan SV, Sefcik J. Chem Eng J, 2016, 285: 718–725

    CAS  Google Scholar 

  45. Lu J, Xin XH, Lin YJ, Wang SH, Xu JG, Zheng FK, Guo GC. Dalton Trans, 2019, 48: 1722–1731

    CAS  Google Scholar 

  46. Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. Chem Soc Rev, 2017, 46: 3453–3480

    CAS  Google Scholar 

  47. Li Z, Chang S, Zhang H, Hu Y, Huang Y, Au L, Ren S. Nano Lett, 2021, 21: 6983–6989

    CAS  Google Scholar 

  48. Liang C, Zhang S, Cheng L, Xie J, Zhai F, He Y, Wang Y, Chai Z, Wang S. Angew Chem Int Ed, 2020, 59: 11856–11860

    CAS  Google Scholar 

  49. Wang YW, Li MH, Zhang SQ, Fang X, Lin MJ. CrystEngComm, 2021, 23: 6267–6275

    CAS  Google Scholar 

  50. Li MH, You MH, Lin MJ. Dalton Trans, 2021, 50: 4959–4966

    CAS  Google Scholar 

  51. Li MH, Lv SL, You MH, Lin MJ. Dalton Trans, 2020, 49: 13083–13089

    CAS  Google Scholar 

  52. Wang YW, Li MH, Zhang SQ, Fang X, Lin MJ. Inorg Chem, 2022, 61: 8153–8159

    CAS  Google Scholar 

  53. Chen M, Sun L, Ou X, Yang H, Liu X, Dong H, Hu W, Duan X. Adv Mater, 2021, 33: 2104749

    CAS  Google Scholar 

  54. Wang WF, Lu J, Xu XM, Li BY, Gao J, Xie MJ, Wang SH, Zheng FK, Guo GC. Chem Eng J, 2022, 430: 133010

    CAS  Google Scholar 

  55. Lu J, Gao J, Wang WF, Li BY, Li PX, Zheng FK, Guo GC. J Mater Chem C, 2021, 9: 5615–5620

    CAS  Google Scholar 

  56. Wang X, Wang Y, Wang Y, Liu H, Zhang Y, Liu W, Wang X, Wang S. Chem Commun, 2020, 56: 233–236

    CAS  Google Scholar 

  57. Doty FP, Doty FP, Barber HB, et al. In Penetrating Radiation Systems and Applications VIII, SPIE. 2007, 6707: 114–121

  58. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Chem Eur J, 2011, 17: 6643–6651

    CAS  Google Scholar 

  59. van Loef EV, Glodo J, Shirwadkar U, Zaitseva N, Shah K. Nucl Instrum Methods Phys Res, Sect A, 2011, 652: 424–426

    CAS  Google Scholar 

  60. Chen T, Yu H, Wen X, Redding C, Hajagos TJ, Zhao H, Hayward JP, Yang C, Pei Q. Adv Opt Mater, 2021, 9: 2001975

    CAS  Google Scholar 

  61. Lu J, Wang SH, Li Y, Wang WF, Sun C, Li PX, Zheng FK, Guo GC. Dalton Trans, 2020, 49: 7309–7314

    CAS  Google Scholar 

  62. Kasap SO, Zahangir Kabir M, Rowlands JA. Curr Appl Phys, 2006, 6: 288–292

    Google Scholar 

  63. Cheng L, Liang C, Liu W, Wang Y, Chen B, Zhang H, Wang Y, Chai Z, Wang S. J Am Chem Soc, 2020, 142: 16218–16222

    CAS  Google Scholar 

  64. Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin WJ, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Nat Photon, 2017, 11: 726–732

    CAS  Google Scholar 

  65. Basiricò L, Senanayak SP, Ciavatti A, Abdi-Jalebi M, Fraboni B, Sirringhaus H. Adv Funct Mater, 2019, 29: 1902346

    Google Scholar 

  66. Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt GJ, Azimi H, Brabec CJ, Stangl J, Kovalenko MV, Heiss W. Nat Photon, 2015, 9: 444–449

    CAS  Google Scholar 

  67. Liang C, Cheng L, Zhang S, Yang S, Liu W, Xie J, Li MD, Chai Z, Wang Y, Wang S. J Am Chem Soc, 2022, 144: 2189–2196

    CAS  Google Scholar 

  68. Han YF, Xu XM, Wang SH, Wang WF, Wang MS, Guo GC. Chem Eng J, 2022, 437: 135468

    CAS  Google Scholar 

  69. Ou X, Qin X, Huang B, Zan J, Wu Q, Hong Z, Xie L, Bian H, Yi Z, Chen X, Wu Y, Song X, Li J, Chen Q, Yang H, Liu X. Nature, 2021, 590: 410–415

    CAS  Google Scholar 

  70. van Breemen AJJM, Simon M, Tousignant O, Shanmugam S, van der Steen J, Akkerman H, Kronemeijer A, Ruetten W, Raaijmakers R, Alving L, Jacobs J, Malinowski P, De Roose F, Gelinck G. npj Flex Electron, 2020, 4: 1–8

    Google Scholar 

  71. Masuzawa T, Saito I, Yamada T, Onishi M, Yamaguchi H, Suzuki Y, Oonuki K, Kato N, Ogawa S, Takakuwa Y, Koh ATT, Chua DHC, Mori Y, Shimosawa T, Okano K. Sensors, 2013, 13: 13744–13778

    CAS  Google Scholar 

  72. Gupta SK, Mao Y. Front Optoelectron, 2020, 13: 156–187

    Google Scholar 

  73. Meng G, Ye Y, Fan L, Wang S, Fang X, Volodymyr G. J Inorg Mater, 2020, 35: 1203–1213

    Google Scholar 

  74. Dong C, Wang X, Gong W, Ma W, Zhang M, Li J, Zhang Y, Zhou Z, Yang Z, Qu S, Wang Q, Zhao Z, Yang G, Lv A, Ma H, Chen Q, Shi H, Yang YM, An Z. Angew Chem Int Ed, 2021, 60: 27195–27200

    CAS  Google Scholar 

  75. Ni K, Lan G, Veroneau SS, Duan X, Song Y, Lin W. Nat Commun, 2018, 9: 4321

    Google Scholar 

  76. Lu K, He C, Guo N, Chan C, Ni K, Lan G, Tang H, Pelizzari C, Fu YX, Spiotto MT, Weichselbaum RR, Lin W. Nat Biomed Eng, 2018, 2: 600–610

    CAS  Google Scholar 

  77. Xu Z, Luo T, Lin W. Acc Mater Res, 2021, 2: 944–953

    CAS  Google Scholar 

  78. Tu M, Xia B, Kravchenko DE, Tietze ML, Cruz AJ, Stassen I, Hauffman T, Teyssandier J, De Feyter S, Wang Z, Fischer RA, Marmiroli B, Amenitsch H, Torvisco A, Velásquez-Hernández MJ, Falcaro P, Ameloot R. Nat Mater, 2021, 20: 93–99

    CAS  Google Scholar 

  79. Armon N, Greenberg E, Edri E, Kenigsberg A, Piperno S, Kapon O, Fleker O, Perelshtein I, Cohen-Taguri G, Hod I, Shpaisman H. Chem Commun, 2019, 55: 12773–12776

    CAS  Google Scholar 

  80. Lu G, Farha OK, Zhang W, Huo F, Hupp JT. Adv Mater, 2012, 24: 3970–3974

    CAS  Google Scholar 

  81. Dimitrakakis C, Marmiroli B, Amenitsch H, Malfatti L, Innocenzi P, Grenci G, Vaccari L, Hill AJ, Ladewig BP, Hill MR, Falcaro P. Chem Commun, 2012, 48: 7483–7485

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971041, 22001039), the Natural Science Foundation of Fujian Province (2020J01447) and the Research Foundation of Education Bureau of Fujian Province (JAT210001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongming Chen, Meijin Lin or Huanghao Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chen, J., Li, M. et al. Recent advances in metal-organic frameworks for X-ray detection. Sci. China Chem. 65, 2338–2350 (2022). https://doi.org/10.1007/s11426-022-1334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1334-0

Keywords

Navigation