Skip to main content
Log in

Deoxygenative alkylation of tertiary amides using alkyl iodides under visible light

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is an unceasing goal for organic chemists to develop new catalytic methodologies for functional group transformations of widespread molecular structures. Amides are readily available from simple and reliable reactions, which are common structural units found in biologically active compounds. Consequently, they are attractive to be exploited in amine synthesis by reductive cross coupling. However, deoxygenative functionalization of amides is a long-standing challenge owing to the inertness of the resonance-stabilized amide C=O bond. In this work, a deoxygenative alkylation strategy was demonstrated, which combines amides and alkyl iodides to build structurally diverse tertiary alkylamines in a single step. Compared with previous deoxygenative alkylation of amides using organometallic reagents as functional partner, this work uses stable and easily available alkyl halides as functionalization reagents. The versatile and flexible strategy plus structural and functional diversity of readily available amides and alkyl iodides renders it highly appealing for the streamlined synthesis of tertiary amines and would be of much interest in areas such as pharmaceutical and agrochemical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith AM, Whyman R. Chem Rev, 2014, 114: 5477–5510

    Article  CAS  PubMed  Google Scholar 

  2. Ruider SA, Maulide N. Angew Chem Int Ed, 2015, 54: 13856–13858

    Article  CAS  Google Scholar 

  3. Volkov A, Tinnis F, Slagbrand T, Trillo P, Adolfsson H. Chem Soc Rev, 2016, 45: 6685–6697

    Article  CAS  PubMed  Google Scholar 

  4. Kaiser D, Bauer A, Lemmerer M, Maulide N. Chem Soc Rev, 2018, 47: 7899–7925

    Article  CAS  PubMed  Google Scholar 

  5. Huang PQ. Acta Chim Sin, 2018, 76: 357–365

    Article  CAS  Google Scholar 

  6. Sato T, Yoritate M, Tajima H, Chida N. Org Biomol Chem, 2018, 16: 3864–3875

    Article  CAS  PubMed  Google Scholar 

  7. Cabrero-Antonino JR, Adam R, Papa V, Beller M. Nat Commun, 2020, 11: 3893–3910

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ong DY, Chen J, Chiba S. BCSJ, 2020, 93: 1339–1349

    Article  CAS  Google Scholar 

  9. Hie L, Fine Nathel NF, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature, 2015, 524: 79–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takise R, Muto K, Yamaguchi J. Chem Soc Rev, 2017, 46: 5864–5888

    Article  CAS  PubMed  Google Scholar 

  11. Li G, Ma S, Szostak M. Trends Chem, 2020, 2: 914–928

    Article  CAS  Google Scholar 

  12. Bao CC, Luo YL, Du HZ, Guan BT. Sci China Chem, 2021, 64: 1349–1354

    Article  CAS  Google Scholar 

  13. Xiao KJ, Luo JM, Ye KY, Wang Y, Huang PQ. Angew Chem Int Ed, 2010, 49: 3037–3040

    Article  CAS  Google Scholar 

  14. Xiao KJ, Wang AE, Huang PQ. Angew Chem Int Ed, 2012, 51: 8314–8317

    Article  CAS  Google Scholar 

  15. Kaiser D, Maulide N. J Org Chem, 2016, 81: 4421–4428

    Article  CAS  PubMed  Google Scholar 

  16. Schedler DJA, Godfrey AG, Ganem B. Tetrahedron Lett, 1993, 34: 5035–5038

    Article  CAS  Google Scholar 

  17. Shirokane K, Kurosaki Y, Sato T, Chida N. Angew Chem Int Ed, 2010, 49: 6369–6372

    Article  CAS  Google Scholar 

  18. Vincent G, Guillot R, Kouklovsky C. Angew Chem Int Ed, 2011, 50: 1350–1353

    Article  CAS  Google Scholar 

  19. Seebach D. Angew Chem Int Ed, 2011, 50: 96–101

    Article  CAS  Google Scholar 

  20. Pace V, Holzer W, Olofsson B. Adv Synth Catal, 2014, 356: 3697–3736

    Article  CAS  Google Scholar 

  21. Ong DY, Fan D, Dixon DJ, Chiba S. Angew Chem Int Ed, 2020, 59: 11903–11907

    Article  CAS  Google Scholar 

  22. Ou W, Huang PQ. Sci China Chem, 2019, 63: 11–15

    Article  Google Scholar 

  23. Tahara A, Nagashima H. Tetrahedron Lett, 2020, 61: 151423–151430

    Article  CAS  Google Scholar 

  24. Matheau-Raven D, Gabriel P, Leitch JA, Almehmadi YA, Yamazaki K, Dixon DJ. ACS Catal, 2020, 10: 8880–8897

    Article  CAS  Google Scholar 

  25. Sunada Y, Kawakami H, Imaoka T, Motoyama Y, Nagashima H. Angew Chem Int Ed, 2009, 48: 9511–9514

    Article  CAS  Google Scholar 

  26. Xie LG, Dixon DJ. Chem Sci, 2017, 8: 7492–7497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rogova T, Gabriel P, Zavitsanou S, Leitch JA, Duarte F, Dixon DJ. ACS Catal, 2020, 10: 11438–11447

    Article  CAS  Google Scholar 

  28. Matheau-Raven D, Dixon DJ. Angew Chem Int Ed, 2021, 60: 19725–19729

    Article  CAS  Google Scholar 

  29. Gabriel P, Almehmadi YA, Wong ZR, Dixon DJ. J Am Chem Soc, 2021, 143: 10828–10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakajima M, Sato T, Chida N. Org Lett, 2015, 17: 1696–1699

    Article  CAS  PubMed  Google Scholar 

  31. Katahara S, Kobayashi S, Fujita K, Matsumoto T, Sato T, Chida N. J Am Chem Soc, 2016, 138: 5246–5249

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi Y, Sato T, Chida N. Chem Lett, 2019, 48: 1138–1141

    Article  CAS  Google Scholar 

  33. Sugiyama Y, Soda Y, Yoritate M, Tajima H, Takahashi Y, Shibuya K, Ogihara C, Yokoyama T, Oishi T, Sato T, Chida N. Bull Chem Soc Jpn, 2022, 95: 278–287

    Article  CAS  Google Scholar 

  34. Ou W, Han F, Hu XN, Chen H, Huang PQ. Angew Chem Int Ed, 2018, 57: 11354–11358

    Article  CAS  Google Scholar 

  35. Chen DH, Sun WT, Zhu CJ, Lu GS, Wu DP, Wang AE, Huang PQ. Angew Chem Int Ed, 2021, 60: 8827–8831

    Article  CAS  Google Scholar 

  36. Trillo P, Slagbrand T, Adolfsson H. Angew Chem Int Ed, 2018, 57: 12347–12351

    Article  CAS  Google Scholar 

  37. Ronson TO, Renders E, Van Steijvoort BF, Wang X, Wybon CCD, Prokopcová H, Meerpoel L, Maes BUW. Angew Chem Int Ed, 2019, 58: 482–487

    Article  CAS  Google Scholar 

  38. He Y, Wang X. Org Lett, 2021, 23: 225–230

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, Zhao F, Ou W, Huang PQ, Wang X. Angew Chem Int Ed, 2021, 60: 26604–26609

    Article  CAS  Google Scholar 

  40. Jiang F, Zhao F, He Y, Luo X, Wang X. Cell Rep Phys Sci, 2022: 100955

  41. Wang XG, Ou W, Liu MH, Liu ZJ, Huang PQ. Org Chem Front, 2022, 9: 3237–3246

    Article  CAS  Google Scholar 

  42. Crespi S, Fagnoni M. Chem Rev, 2020, 120: 9790–9833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sumida Y, Ohmiya H. Chem Soc Rev, 2021, 50: 6320–6332

    Article  CAS  PubMed  Google Scholar 

  44. Latrache M, Hoffmann N. Chem Soc Rev, 2021, 50: 7418–7435

    Article  CAS  PubMed  Google Scholar 

  45. Xuan J, Xiao WJ. Angew Chem Int Ed, 2012, 51: 6828–6838

    Article  CAS  Google Scholar 

  46. Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hopkinson MN, Sahoo B, Li JL, Glorius F. Chem Eur J, 2014, 20: 3874–3886

    Article  CAS  PubMed  Google Scholar 

  48. Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat Rev Chem, 2017, 1: 0052

    Article  CAS  Google Scholar 

  50. Friestad GK. Tetrahedron, 2001, 57: 5461–5496

    Article  CAS  Google Scholar 

  51. Miyabe H, Yoshioka E, Kohtani S. COC, 2010, 14: 1254–1264

    Article  CAS  Google Scholar 

  52. Friestad GK. Top Curr Chem, 2012, 320: 61–91

    Article  CAS  PubMed  Google Scholar 

  53. Tauber J, Imbri D, Opatz T. Molecules, 2014, 19: 16190–16222

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kumar R, Flodén NJ, Whitehurst WG, Gaunt MJ. Nature, 2020, 581: 415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blackwell JH, Kumar R, Gaunt MJ. J Am Chem Soc, 2021, 143: 1598–1609

    Article  CAS  PubMed  Google Scholar 

  56. Chatgilialoglu C, Lalevée J. Molecules, 2012, 17: 527–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Chem Rev, 2018, 118: 6516–6572

    Article  CAS  PubMed  Google Scholar 

  58. Dinnocenzo JP, Banach TE. J Am Chem Soc, 1989, 111: 8646–8653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22171278, 21821002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Jiang, F. & Wang, X. Deoxygenative alkylation of tertiary amides using alkyl iodides under visible light. Sci. China Chem. 65, 2231–2237 (2022). https://doi.org/10.1007/s11426-022-1331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1331-y

Keywords

Navigation