Skip to main content
Log in

Vertically aligned Ni/NiO nanocomposites with abundant oxygen deficient hetero-interfaces for enhanced overall water splitting

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The design of heterostructured transition metal-based electrocatalysts with controlled composition and interfaces is key to increasing the efficiency of the water electrolysis and the elucidation of reaction mechanisms. In this work, we report the synthesis of well-controlled vertically aligned Ni/NiO nanocomposites consisting of Ni nanoclusters embedded in NiO, which result in highly efficient electrocatalysts for overall water splitting. We show that such a high catalytic efficiency toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) originates from a synergetic effect at Ni/NiO interfaces that significantly reduces the energy barrier for water dissociation, and favours the formation of reactive H* intermediates on the Ni side of the interface, and OHads on the NiO side of the interface. A study of water chemisorption based on near-ambient pressure photoelectron spectroscopy indicates that the abundant hetero-interfaces in Ni/NiO nanocomposite promote the dissociation of water with a three-fold increase in the surface concentration of OHads compared with pure NiO. Density functional theory calculations indicate that Ni/NiO interface leads to the reduction of the water dissociation energy barrier due to a high concentration of oxygen vacancies at NiO side of the interface, whereas the formation of highly active metallic Ni sites with an optimal value of Gibbs free energy of H* (ΔGH* = −0.16 eV) owes to a favourable adjustment of the electron energetics at the interface, thus accelerating the overall electrochemical water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM. Nat Mater, 2017, 16: 57–69

    Article  CAS  Google Scholar 

  2. Wang H, Zhang KHL, Hofmann JP, de la Peña O’Shea VA, Oropeza FE. J Mater Chem A, 2021, 9: 19465–19488

    Article  CAS  Google Scholar 

  3. Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Nørskov JK. Nat Mater, 2017, 16: 70–81

    Article  Google Scholar 

  4. Wang C, Xu H, Gao F, Zhang Y, Song T, Wang C, Shang H, Zhu X, Du Y. Nanoscale, 2019, 11: 18176–18182

    Article  CAS  PubMed  Google Scholar 

  5. Zhu K, Shi F, Zhu X, Yang W. Nano Energy, 2020, 73: 104761

    Article  CAS  Google Scholar 

  6. Jiang K, Liu B, Luo M, Ning S, Peng M, Zhao Y, Lu YR, Chan TS, de Groot FMF, Tan Y. Nat Commun, 2019, 10: 1743

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao D, Zhuang Z, Cao X, Zhang C, Peng Q, Chen C, Li Y. Chem Soc Rev, 2020, 49: 2215–2264

    Article  CAS  PubMed  Google Scholar 

  8. Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y. Energy Environ Sci, 2015, 8: 1404–1427

    Article  CAS  Google Scholar 

  9. Zou X, Zhang Y. Chem Soc Rev, 2015, 44: 5148–5180

    Article  CAS  PubMed  Google Scholar 

  10. Wang C, Shang H, Li J, Wang Y, Xu H, Wang C, Guo J, Du Y. Chem Eng J, 2021, 420: 129805

    Article  CAS  Google Scholar 

  11. Li J, Zhou Z, Xu H, Wang C, Hata S, Dai Z, Shiraishi Y, Du Y. J Colloid Interface Sci, 2022, 611: 523–532

    Article  CAS  PubMed  Google Scholar 

  12. Trotochaud L, Young SL, Ranney JK, Boettcher SW. J Am Chem Soc, 2014, 136: 6744–6753

    Article  CAS  PubMed  Google Scholar 

  13. Cui M, Ding X, Huang X, Shen Z, Lee TL, Oropeza FE, Hofmann JP, Hensen EJM, Zhang KHL. Chem Mater, 2019, 31: 7618–7625

    Article  CAS  Google Scholar 

  14. Yu R, Wang C, Liu D, Wu Z, Li J, Du Y. Inorg Chem Front, 2022, 9: 3130–3137

    Article  CAS  Google Scholar 

  15. Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S. Adv Energy Mater, 2018, 8: 1801926

    Article  Google Scholar 

  16. Ji X, Lin Y, Zeng J, Ren Z, Lin Z, Mu Y, Qiu Y, Yu J. Nat Commun, 2021, 12: 1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lagadec MF, Grimaud A. Nat Mater, 2020, 19: 1140–1150

    Article  CAS  PubMed  Google Scholar 

  18. An L, Wei C, Lu M, Liu H, Chen Y, Scherer GG, Fisher AC, Xi P, Xu ZJ, Yan CH. Adv Mater, 2021, 33: 2006328

    Article  CAS  Google Scholar 

  19. Lao M, Rui K, Zhao G, Cui P, Zheng X, Dou SX, Sun W. Angew Chem Int Ed, 2019, 58: 5432–5437

    Article  CAS  Google Scholar 

  20. Wang L, Zhu Y, Zeng Z, Lin C, Giroux M, Jiang L, Han Y, Greeley J, Wang C, Jin J. Nano Energy, 2017, 31: 456–461

    Article  Google Scholar 

  21. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM. Science, 2011, 334: 1256–1260

    Article  CAS  PubMed  Google Scholar 

  22. Xu W, Zhu S, Liang Y, Cui Z, Yang X, Inoue A. J Mater Chem A, 2018, 6: 5574–5579

    Article  CAS  Google Scholar 

  23. Yu F, Zhou H, Huang Y, Sun J, Qin F, Bao J, Goddard Iii WA, Chen S, Ren Z. Nat Commun, 2018, 9: 2551

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xie Y, Wang X, Tang K, Li Q, Yan C. Electrochim Acta, 2018, 264: 225–232

    Article  CAS  Google Scholar 

  25. Sun L, Luo Q, Dai Z, Ma F. Coord Chem Rev, 2021, 444: 214049

    Article  CAS  Google Scholar 

  26. Shang X, Tang JH, Dong B, Sun Y. Sustain Energy Fuels, 2020, 4: 3211–3228

    Article  CAS  Google Scholar 

  27. Wang H, Fu W, Yang X, Huang Z, Li J, Zhang H, Wang Y. J Mater Chem A, 2020, 8: 6926–6956

    Article  CAS  Google Scholar 

  28. Wei C, Sun S, Mandler D, Wang X, Qiao SZ, Xu ZJ. Chem Soc Rev, 2019, 48: 2518–2534

    Article  CAS  PubMed  Google Scholar 

  29. Huang J, Wang H, Wang X, Gao X, Liu J, Wang H. ACS Appl Mater Interfaces, 2020, 12: 39920–39925

    Article  CAS  PubMed  Google Scholar 

  30. Su Q, Zhang W, Lu P, Fang S, Khatkhatay F, Jian J, Li L, Chen F, Zhang X, MacManus-Driscoll JL, Chen A, Jia Q, Wang H. ACS Appl Mater Interfaces, 2016, 8: 20283–20291

    Article  CAS  PubMed  Google Scholar 

  31. Cho S, Jang JW, Li L, Jian J, Wang H, MacManus-Driscoll JL. Chem Mater, 2016, 28: 3017–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang J, Wang X, Hogan NL, Wu S, Lu P, Fan Z, Dai Y, Zeng B, Starko-Bowes R, Jian J, Wang H, Li L, Prasankumar RP, Yarotski D, Sheldon M, Chen HT, Jacob Z, Zhang X, Wang H. Adv Sci, 2018, 5: 1800416

    Article  Google Scholar 

  33. Fan M, Zhang B, Wang H, Jian J, Sun X, Huang J, Li L, Zhang X, Wang H. Adv Mater, 2017, 29: 1606861

    Article  Google Scholar 

  34. Jiao Y, Hong W, Li P, Wang L, Chen G. Appl Catal B-Environ, 2019, 244: 732–739

    Article  CAS  Google Scholar 

  35. Lei Y, Xu T, Ye S, Zheng L, Liao P, Xiong W, Hu J, Wang Y, Wang J, Ren X, He C, Zhang Q, Liu J, Sun X. Appl Catal B-Environ, 2021, 285: 119809

    Article  CAS  Google Scholar 

  36. Wang J, Ge X, Shao L, Zhang J, Peng D, Zou G, Hou H, Deng W, Xu S, Ji X, Zhang W. Mater Today Energy, 2020, 17: 100436

    Article  Google Scholar 

  37. MacManus-Driscoll JL. Adv Funct Mater, 2010, 20: 2035–2045

    Article  CAS  Google Scholar 

  38. Wang X, Qi Z, Liu J, Wang H, Xu X, Zhang X, Wang H. ACS Appl Mater Interfaces, 2021, 13: 39730–39737

    Article  CAS  PubMed  Google Scholar 

  39. Park S, Ahn HS, Lee CK, Kim H, Jin H, Lee HS, Seo S, Yu J, Han S. Phys Rev B, 2008, 77: 134103

    Article  Google Scholar 

  40. Aidhy DS, Liu B, Zhang Y, Weber WJ. Comput Mater Sci, 2015, 99: 298–305

    Article  CAS  Google Scholar 

  41. Biswas S, Husek J, Londo S, Baker LR. J Phys Chem Lett, 2018, 9: 5047–5054

    Article  CAS  PubMed  Google Scholar 

  42. Jang WL, Lu YM, Hwang WS, Dong CL, Hsieh PH, Chen CL, Chan TS, Lee JF. EPL, 2011, 96: 37009

    Article  Google Scholar 

  43. Rodriguez JA, Hanson JC, Frenkel AI, Kim JY, Pérez M. J Am Chem Soc, 2002, 124: 346–354

    Article  CAS  PubMed  Google Scholar 

  44. Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, Hu X, Wang H, Pan B, Xie Y. Angew Chem Int Ed, 2015, 54: 7399–7404

    Article  CAS  Google Scholar 

  45. Hu C, Wang X, Yao T, Gao T, Han J, Zhang X, Zhang Y, Xu P, Song B. Adv Funct Mater, 2019, 29: 1902449

    Article  Google Scholar 

  46. Uchimoto Y, Sawada H, Yao T. J Power Sources, 2001, 97–98: 326–327

    Article  Google Scholar 

  47. Leapman RD, Grunes LA. Phys Rev Lett, 1980, 45: 397–401

    Article  CAS  Google Scholar 

  48. Sparrow TG, Williams BG, Rao CNR, Thomas JM. Chem Phys Lett, 1984, 108: 547–550

    Article  CAS  Google Scholar 

  49. Jeangros Q, Hansen TW, Wagner JB, Dunin-Borkowski RE, Hébert C, Van herle J, Hessler-Wyser A. Acta Mater, 2014, 67: 362–372

    Article  CAS  Google Scholar 

  50. Zhu Y, Li C, Wang Q, Wang J, Chen L, Gu M. Appl Phys Lett, 2019, 115: 143902

    Article  Google Scholar 

  51. Dickey EC, Dravid VP, Nellist PD, Wallis DJ, Pennycook SJ, Revcolevschi A. Microsc Microanal, 1997, 3: 443–450

    Article  CAS  Google Scholar 

  52. Zhang JY, Li WW, Hoye RLZ, MacManus-Driscoll JL, Budde M, Bierwagen O, Wang L, Du Y, Wahila MJ, Piper LFJ, Lee TL, Edwards HJ, Dhanak VR, Zhang KHL. J Mater Chem C, 2018, 6: 2275–2282

    Article  CAS  Google Scholar 

  53. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Phys Rev B, 1998, 57: 1505–1509

    Article  CAS  Google Scholar 

  54. Stevens MB, Enman LJ, Batchellor AS, Cosby MR, Vise AE, Trang CDM, Boettcher SW. Chem Mater, 2016, 29: 120–140

    Article  Google Scholar 

  55. Stoerzinger KA, Wang L, Ye Y, Bowden M, Crumlin EJ, Du Y, Chambers SA. J Mater Chem A, 2018, 6: 22170–22178

    Article  CAS  Google Scholar 

  56. Wang L, Stoerzinger KA, Chang L, Yin X, Li Y, Tang CS, Jia E, Bowden ME, Yang Z, Abdelsamie A, You L, Guo R, Chen J, Rusydi A, Wang J, Chambers SA, Du Y. ACS Appl Mater Interfaces, 2019, 11: 12941–12947

    Article  CAS  PubMed  Google Scholar 

  57. Qin F, Zhao Z, Alam MK, Ni Y, Robles-Hernandez F, Yu L, Chen S, Ren Z, Wang Z, Bao J. ACS Energy Lett, 2018, 3: 546–554

    Article  CAS  Google Scholar 

  58. Shen Z, Zhuang Y, Li W, Huang X, Oropeza FE, Hensen EJM, Hofmann JP, Cui M, Tadich A, Qi D, Cheng J, Li J, Zhang KHL. J Mater Chem A, 2020, 8: 4407–4415

    Article  CAS  Google Scholar 

  59. Rao RR, Kolb MJ, Hwang J, Pedersen AF, Mehta A, You H, Stoerzinger KA, Feng Z, Zhou H, Bluhm H, Giordano L, Stephens IEL, Shao-Horn Y. J Phys Chem C, 2018, 122: 17802–17811

    Article  CAS  Google Scholar 

  60. Fu G, Wen X, Xi S, Chen Z, Li W, Zhang JY, Tadich A, Wu R, Qi DC, Du Y, Cheng J, Zhang KHL. Chem Mater, 2018, 31: 419–428

    Article  Google Scholar 

  61. Morales-Guio CG, Stern LA, Hu X. Chem Soc Rev, 2014, 43: 6555–6569

    Article  CAS  PubMed  Google Scholar 

  62. Greiner MT, Helander MG, Wang ZB, Tang WM, Lu ZH. J Phys Chem C, 2010, 114: 19777–19781

    Article  CAS  Google Scholar 

  63. Greiner MT, Lu ZH. NPG Asia Mater, 2013, 5: e55

    Article  CAS  Google Scholar 

  64. Jiao S, Fu X, Huang H. Adv Funct Mater, 2022, 32: 2107651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Kelvin H.L. Zhang is grateful for funding support by the National Natural Science Foundation of China (21872116). F.E. Oropeza and V. A. de la Peña O’Shea are grateful for the funding supported by the EU (ERC CoG HyMAP 648319) and Spanish AEI (NyMPhA PID2019-106315RB-I00). Also, this work has been funded by the regional government of Comunidad de Madrid and European Structural Funds through their financial support to FotoArt-CM project (S2018/NMT-4367). Besides, Fundación Ramon Areces funded this work though ArtLeaf project. Kelvin H.L. Zhang also acknowledge the Sino-German Mobility Program (M-0377). SuperSTEM is the National Research Facility for Advanced Electron Microscopy, funded from the Engineering and Physics Research Council (EPSRC). M. Bugnet is grateful to the SuperSTEM Laboratory for microscope access, and to the School of Chemical and Process Engineering at the University of Leeds for a visiting associate professorship and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Freddy E. Oropeza or Kelvin H. L. Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1326_MOESM1_ESM.pdf

Vertically Aligned Ni/NiO Nanocomposites with Abundant Oxygen Deficient Hetero-interfaces for Enhanced Overall Water Splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cui, M., Fu, G. et al. Vertically aligned Ni/NiO nanocomposites with abundant oxygen deficient hetero-interfaces for enhanced overall water splitting. Sci. China Chem. 65, 1885–1894 (2022). https://doi.org/10.1007/s11426-022-1326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1326-2

Keywords

Navigation