Skip to main content
Log in

A hydrophobic artificial solid-interphase-protective layer with fast self-healable capability for stable lithium metal anodes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lithium (Li) metal has been considered as one of the most promising anodes for high-energy-density batteries. However, the hyperactivity of metallic Li and its dendrite growth are the major hurdles to its practical applications. Herein, a multi-functional solid-interphase-protective layer with excellent waterproof performance and fast self-healing properties was modified on the surface of Li metal to address the above issues. Under the protection of this interface, the metallic Li (denoted as P—Li) exhibited superior electrochemical stability in both Li/Li symmetric cells and full cells. Notably, even after being exposed to humid air for 3 h, the LiFePO4∥Li full battery with P—Li anodes still showed long-term stability with a transcendental capacity retention of ∼100% after 100 cycles, revealing a significant advantage to the non-working LiFePO4∥Li battery with air-exposed bare Li anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yi CQ, He C. Sci China Chem, 2010, 53: 86–90

    Article  CAS  Google Scholar 

  2. Zhao M, Peng YQ, Li BQ, Zhang XQ, Huang JQ. J Energy Chem, 2021, 56: 203–208

    Article  Google Scholar 

  3. Wu W, Duan J, Wen J, Chen Y, Liu X, Huang L, Wang Z, Deng S, Huang Y, Luo W. Sci China Chem, 2020, 63: 1483–1489

    Article  CAS  Google Scholar 

  4. Lai C, Zhang Z, Xu Y, Liao J, Xu Z, Yi Z, Xu J, Bao J, Zhou X. J Mater Chem A, 2021, 9: 1487–1494

    Article  CAS  Google Scholar 

  5. Liang JY, Zeng XX, Zhang XD, Wang PF, Ma JY, Yin YX, Wu XW, Guo YG, Wan LJ. J Am Chem Soc, 2018, 140: 6767–6770

    Article  CAS  PubMed  Google Scholar 

  6. Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Sci Adv, 2018, 4: eaat5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Y, Ye Y, Wu F, Li Y, Li L, Chen R. Adv Mater, 2019, 31: 1806532

    Article  Google Scholar 

  8. Goodenough JB, Kim Y. Chem Mater, 2010, 22: 587–603

    Article  CAS  Google Scholar 

  9. Tarascon JM, Armand M. Nature, 2001, 414: 359–367

    Article  CAS  PubMed  Google Scholar 

  10. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Nat Mater, 2012, 11: 19–29

    Article  CAS  Google Scholar 

  11. Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y, Wachsman ED, Hu L. J Am Chem Soc, 2016, 138: 12258–12262

    Article  CAS  PubMed  Google Scholar 

  12. Ding JF, Xu R, Ma XX, Xiao Y, Yao YX, Yan C, Huang JQ. Angew Chem Int Ed, 2022, 61: e202115602

    CAS  Google Scholar 

  13. Yin YX, Xin S, Guo YG, Wan LJ. Angew Chem Int Ed, 2013, 52: 13186–13200

    Article  CAS  Google Scholar 

  14. Ye H, Xin S, Yin YX, Guo YG. Adv Energy Mater, 2017, 7: 1700530

    Article  Google Scholar 

  15. Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon JM, Bouchet R, Lascaud S. Electrochim Acta, 2006, 51: 5334–5340

    Article  CAS  Google Scholar 

  16. Liu T, Feng XL, Jin X, Shao MZ, Su YT, Zhang Y, Zhang XB. Angew Chem Int Ed, 2019, 58: 18240–18245

    Article  CAS  Google Scholar 

  17. Liang J, Li X, Zhao Y, Goncharova LV, Li W, Adair KR, Banis MN, Hu Y, Sham TK, Huang H, Zhang L, Zhao S, Lu S, Li R, Sun X. Adv Energy Mater, 2019, 9: 1902125

    Article  CAS  Google Scholar 

  18. Zhang Z, Liang J, Zhang X, Yang W, Dong X, Jung Y. Int J Hydrogen Energy, 2020, 45: 8186–8197

    Article  CAS  Google Scholar 

  19. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Nat Commun, 2015, 6: 8058

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Li S, Notten PHL, Zhang Y, Hao Q, Zhang X, Lei W. ACS Appl Mater Interfaces, 2021, 13: 24785–24794

    Article  CAS  PubMed  Google Scholar 

  21. Gao J, Zhu J, Li X, Li J, Guo X, Li H, Zhou W. Adv Funct Mater, 2021, 31: 2001918

    Article  CAS  Google Scholar 

  22. Chen Y, Huang Y, Fu H, Wu Y, Zhang D, Wen J, Huang L, Dai Y, Huang Y, Luo W. ACS Appl Mater Interfaces, 2021, 13: 28398–28404

    Article  CAS  PubMed  Google Scholar 

  23. Jin S, Jiang Y, Ji H, Yu Y. Adv Mater, 2018, 30: 1802014

    Article  Google Scholar 

  24. Fang Y, Hsieh YY, Khosravifar M, Johnson K, Adusei PK, Kanakaraj SN, Preisler S, Zhang G, Shanov V. Mater Sci Eng-B, 2021, 267: 115067

    Article  CAS  Google Scholar 

  25. Qiang Z, Liu B, Yang B, Ma P, Yan X, Wang B. ChemElectroChem, 2021, 8: 2479–2487

    Article  CAS  Google Scholar 

  26. Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang JG. J Am Chem Soc, 2013, 135: 4450–4456

    Article  CAS  PubMed  Google Scholar 

  27. Sun H, Xie X, Huang Q, Wang Z, Chen K, Li X, Gao J, Li Y, Li H, Qiu J, Zhou W. Angew Chem Int Ed, 2021, 60: 18335–18343

    Article  CAS  Google Scholar 

  28. Zhu J, Li XL, Wu C, Gao J, Xu H, Li Y, Guo X, Li H, Zhou W. Angew Chem Int Ed, 2021, 60: 3781–3790

    Article  CAS  Google Scholar 

  29. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang YM, Cui Y. Nat Commun, 2015, 6: 7436–7443

    Article  PubMed  Google Scholar 

  30. Lee YM, Seo JE, Lee YG, Lee SH, Cho KY, Park JK. Electrochem Solid-State Lett, 2007, 10: A216

    Article  CAS  Google Scholar 

  31. Zuo TT, Shi Y, Wu XW, Wang PF, Wang SH, Yin YX, Wang WP, Ma Q, Zeng XX, Ye H, Wen R, Guo YG. ACS Appl Mater Interfaces, 2018, 10: 30065–30070

    Article  CAS  PubMed  Google Scholar 

  32. Yu X, Manthiram A. Acc Chem Res, 2017, 50: 2653–2660

    Article  CAS  PubMed  Google Scholar 

  33. Peng HJ, Huang JQ, Zhang Q. Chem Soc Rev, 2017, 46: 5237–5288

    Article  CAS  PubMed  Google Scholar 

  34. Xu R, Ding JF, Ma XX, Yan C, Yao YX, Huang JQ. Adv Mater, 2021, 33: 2105962

    Article  CAS  Google Scholar 

  35. Wu N, Shi YR, Jia T, Du XN, Yin YX, Xin S, Guo YG. ACS Appl Mater Interfaces, 2019, 11: 43200–43205

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y, Cui G, Chen L. Adv Energy Mater, 2015, 5: 1501082

    Article  Google Scholar 

  37. Chen X, Shang M, Niu J. ACS Appl Mater Interfaces, 2021, 13: 34064–34073

    Article  CAS  PubMed  Google Scholar 

  38. Cui J, Daniel D, Grinthal A, Lin K, Aizenberg J. Nat Mater, 2015, 14: 790–795

    Article  CAS  PubMed  Google Scholar 

  39. Dong Z, Wei J, Yue H, Zhang K, Wang L, Li X, Zhang Z, Yang W, Yang S. J Colloid Interface Sci, 2021, 595: 35–42

    Article  CAS  PubMed  Google Scholar 

  40. Wu N, Shi YR, Lang SY, Zhou JM, Liang JY, Wang W, Tan SJ, Yin YX, Wen R, Guo YG. Angew Chem Int Ed, 2019, 58: 18146–18149

    Article  CAS  Google Scholar 

  41. Zhang D, Wang S, Li B, Gong Y, Yang S. Adv Mater, 2019, 31: 1901820

    Article  Google Scholar 

  42. Li NW, Shi Y, Yin YX, Zeng XX, Li JY, Li CJ, Wan LJ, Wen R, Guo YG. Angew Chem Int Ed, 2018, 57: 1505–1509

    Article  CAS  Google Scholar 

  43. Busche MR, Drossel T, Leichtweiss T, Weber DA, Falk M, Schneider M, Reich ML, Sommer H, Adelhelm P, Janek J. Nat Chem, 2016, 8: 426–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21975063), the Natural Science Foundation of Hebei Province (B2020205019, B2021205019, B2019205249 and B2021205029) and the School Fund of Hebei Normal University (L2017B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1323_MOESM1_ESM.pdf

A hydrophobic artificial solid interphase protective layer with fast self-healable capability for stable lithium metal anode

Supplementary material, approximately 1.75 MB.

Supplementary material, approximately 1.75 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhao, M., Chen, X. et al. A hydrophobic artificial solid-interphase-protective layer with fast self-healable capability for stable lithium metal anodes. Sci. China Chem. 65, 1817–1821 (2022). https://doi.org/10.1007/s11426-022-1323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1323-8

Keywords

Navigation