Skip to main content
Log in

Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Wounds on stretchable parts of the human body cause prolonged suffering and involve more severe healing processes than wounds on stationary parts. However, they have received insufficient attention compared with other types of chronic wounds. In this study, a novel supramolecular gelatin (GT) hydrogel composed of GT-graft-aniline tetramer and quaternized chitosan was presented. The hydrogel was crosslinked by monoaldehyde β-cyclodextrin via host—guest interaction and dynamic Schiff base and was free from permanent covalent bonds, heavy metals, and oxidants. Given its dynamic feature, the hydrogel exhibited flexibility, self-healing, and tissue adhesiveness and well adapted to motion wounds. Moreover, the hydrogel was bioactive with conductivity, antioxidant property, hemostatic effect, antibacterial, and photothermal effect (the killing ratio for methicillin-resistant Staphylococcus aureus (MRSA) was higher than 99.8% after 5 min of near-infrared irradiation) and exhibited on-demand removability. In the full-thickness MRSA-infected motional wound healing experiment, this novel hydrogel exhibited a significantly enhanced wound healing efficacy with a fast wound closure ratio (about 99.0% for 14 days), mild inflammatory response, high level of collagen deposition, and enhanced re-epithelialization by downregulating interleukin-6 and CD68 and upregulating vascular endothelial growth factor. The results indicated that this hydrogel has great potential in wound healing and skin tissue engineering and serves as an inspiration for the design of supramolecular biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun BK, Siprashvili Z, Khavari PA. Science, 2014, 346: 941–945

    Article  CAS  PubMed  Google Scholar 

  2. Xu Z, Han S, Gu Z, Wu J. Adv Healthcare Mater, 2020, 9: 1901502

    Article  CAS  Google Scholar 

  3. Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Adv Healthcare Mater, 2020, 9: 2000905

    Article  CAS  Google Scholar 

  4. Weller CD, Team V, Sussman G. Front Pharmacol, 2020, 11: 155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, He J, Yang Y, Qiao L, Hu J, Zhang J, Guo B. Acta Biomater, 2022, 146: 119–130

    Article  CAS  PubMed  Google Scholar 

  6. Li Z, Zhou F, Li Z, Lin S, Chen L, Liu L, Chen Y. ACS Appl Mater Interfaces, 2018, 10: 25194–25202

    Article  CAS  PubMed  Google Scholar 

  7. Ter Horst B, Chouhan G, Moiemen NS, Grover LM. Adv Drug Deliver Rev, 2018, 123: 18–32

    Article  CAS  Google Scholar 

  8. Zhao Y, Li Z, Song S, Yang K, Liu H, Yang Z, Wang J, Yang B, Lin Q. Adv Funct Mater, 2019, 29: 1901474

    Article  Google Scholar 

  9. Liu Y, Zhou S, Gao Y, Zhai Y. Asian J Pharmaceutical Sci, 2019, 14: 130–143

    Google Scholar 

  10. Liang Y, Li M, Yang Y, Qiao L, Xu H, Guo B. ACS Nano, 2022, 16: 3194–3207

    Article  CAS  PubMed  Google Scholar 

  11. Li S, Wang L, Zheng W, Yang G, Jiang X. Adv Funct Mater, 2020, 30: 2002370

    Article  CAS  Google Scholar 

  12. Li M, Liang Y, Liang Y, Pan G, Guo B. Chem Eng J, 2022, 427: 132039

    Article  CAS  Google Scholar 

  13. Liang Y, He J, Guo B. ACS Nano, 2021, 15: 12687–12722

    Article  CAS  PubMed  Google Scholar 

  14. Dong R, Guo B. Nano Today, 2021, 41: 101290

    Article  CAS  Google Scholar 

  15. Li M, Zhang Z, Liang Y, He J, Guo B. ACS Appl Mater Interfaces, 2020, 12: 35856–35872

    Article  CAS  PubMed  Google Scholar 

  16. Nam S, Mooney D. Chem Rev, 2021, 121: 11336–11384

    Article  CAS  PubMed  Google Scholar 

  17. Yu R, Yang Y, He J, Li M, Guo B. Chem Eng J, 2021, 417: 128278

    Article  CAS  Google Scholar 

  18. Duconseille A, Astruc T, Quintana N, Meersman F, Sante-Lhoutellier V. Food Hydrocolloids, 2015, 43: 360–376

    Article  CAS  Google Scholar 

  19. Dong Y, A S, Rodrigues M, Li X, Kwon SH, Kosaric N, Khong S, Gao Y, Wang W, Gurtner GC. Adv Funct Mater, 2017, 27: 1606619

    Article  Google Scholar 

  20. Liang Y, Chen B, Li M, He J, Yin Z, Guo B. Biomacromolecules, 2020, 21: 1841–1852

    Article  CAS  PubMed  Google Scholar 

  21. He Q, Huang Y, Wang S. Adv Funct Mater, 2018, 28: 1705069

    Article  Google Scholar 

  22. Feng Q, Wei K, Lin S, Xu Z, Sun Y, Shi P, Li G, Bian L. Biomaterials, 2016, 101: 217–228

    Article  CAS  PubMed  Google Scholar 

  23. Korupalli C, Li H, Nguyen N, Mi FL, Chang Y, Lin YJ, Sung HW. Adv Healthcare Mater, 2020, 10: 2001384

    Article  Google Scholar 

  24. Liu Y, Hu J, Zhuang X, Zhang P, Wei Y, Wang X, Chen X. Macromol Biosci, 2012, 12: 241–250

    Article  CAS  PubMed  Google Scholar 

  25. Parani M, Lokhande G, Singh A, Gaharwar AK. ACS Appl Mater Interfaces, 2016, 8: 10049–10069

    Article  CAS  PubMed  Google Scholar 

  26. Maleki A, He J, Bochani S, Nosrati V, Shahbazi MA, Guo B. ACS Nano, 2021, 15: 18895–18930

    Article  CAS  PubMed  Google Scholar 

  27. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Biomaterials, 2017, 122: 34–47

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Xiong Y, Hu Y, Yu C, Panayi AC, Zhou W, Cao F, Sun Y, Liu M, Liu G, Xue H, Hu L, Mi B, Liu G. Chem Eng J, 2022, 427: 131419

    Article  CAS  Google Scholar 

  29. Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G. J Med Chem, 2020, 63: 1–22

    Article  CAS  PubMed  Google Scholar 

  30. Cui H, Liu Y, Cheng Y, Zhang Z, Zhang P, Chen X, Wei Y. Biomacromolecules, 2014, 15: 1115–1123

    Article  CAS  PubMed  Google Scholar 

  31. Dong R, Zhao X, Guo B, Ma PX. ACS Appl Mater Interfaces, 2016, 8: 17138–17150

    Article  CAS  PubMed  Google Scholar 

  32. Balint R, Cassidy NJ, Cartmell SH. Acta Biomater, 2014, 10: 2341–2353

    Article  CAS  PubMed  Google Scholar 

  33. Gonil P, Sajomsang W, Ruktanonchai UR, Pimpha N, Sramala I, Nuchuchua O, Saesoo S, Chaleawlert-umpon S, Puttipipatkhachorn S. Carbohydrate Polyms, 2011, 83: 905–913

    Article  CAS  Google Scholar 

  34. Choi HS, Huh KM, Ooya T, Yui N. J Am Chem Soc, 2003, 125: 6350–6351

    Article  CAS  PubMed  Google Scholar 

  35. Roy MN, Saha S, Barman S, Ekka D. RSC Adv, 2016, 6: 8881–8891

    Article  CAS  Google Scholar 

  36. Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B. Biomaterials, 2018, 183: 185–199

    Article  CAS  PubMed  Google Scholar 

  37. Han G, Ceilley R. Adv Ther, 2017, 34: 599–610

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang C, Chai Y, Wen X, Ai Y, Zhao H, Hu W, Yang X, Ding MY, Shi X, Liu Q, Liang Q. ACS Mater Lett, 2021, 3: 1238–1248

    Article  CAS  Google Scholar 

  39. Deng Z, Guo Y, Zhao X, Ma PX, Guo B. Chem Mater, 2018, 30: 1729–1742

    Article  CAS  Google Scholar 

  40. Lo YW, Sheu MT, Chiang WH, Chiu YL, Tu CM, Wang WY, Wu MH, Wang YC, Lu M, Ho HO. Acta Biomater, 2019, 86: 280–290

    Article  CAS  PubMed  Google Scholar 

  41. Rizzo F, Kehr NS. Adv Healthcare Mater, 2021, 10: 2001341

    Article  CAS  Google Scholar 

  42. Saunders L, Ma PX. Macromol Biosci, 2019, 19: 1800313

    Article  Google Scholar 

  43. Uman S, Dhand A, Burdick JA. J Appl Polym Sci, 2020, 137: 48668

    Article  CAS  Google Scholar 

  44. Avery RK, Albadawi H, Akbari M, Zhang YS, Duggan MJ, Sahani DV, Olsen BD, Khademhosseini A, Oklu R. Sci Transl Med, 2016, 8: 365ra156

    Article  PubMed  Google Scholar 

  45. Zhang W, Wang R, Sun ZM, Zhu X, Zhao Q, Zhang T, Cholewinski A, Yang FK, Zhao B, Pinnaratip R, Forooshani PK, Lee BP. Chem Soc Rev, 2020, 49: 433–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huangfu Y, Li S, Deng L, Zhang J, Huang P, Feng Z, Kong D, Wang W, Dong A. ACS Appl Mater Interfaces, 2021, 13: 59695–59707

    Article  CAS  PubMed  Google Scholar 

  47. Liang Y, Li Z, Huang Y, Yu R, Guo B. ACS Nano, 2021, 15: 7078–7093

    Article  CAS  PubMed  Google Scholar 

  48. Konieczynska MD, Villa-Camacho JC, Ghobril C, Perez-Viloria M, Tevis KM, Blessing WA, Nazarian A, Rodriguez EK, Grinstaff MW. Angew Chem Int Ed, 2016, 55: 9984–9987

    Article  CAS  Google Scholar 

  49. Huang W, Wang Y, Huang Z, Wang X, Chen L, Zhang Y, Zhang L. ACS Appl Mater Interfaces, 2018, 10: 41076–41088

    Article  CAS  PubMed  Google Scholar 

  50. Zhao X, Li P, Guo B, Ma PX. Acta Biomater, 2015, 26: 236–248

    Article  CAS  PubMed  Google Scholar 

  51. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT. Int Wound J, 2017, 14: 89–96

    Article  PubMed  Google Scholar 

  52. Wan A, Xu Q, Sun Y, Li H. J Agric Food Chem, 2013, 61: 6921–6928

    Article  CAS  PubMed  Google Scholar 

  53. Zeng Q, Qi X, Shi G, Zhang M, Haick H. ACS Nano, 2022, 16: 1708–1733

    Article  CAS  PubMed  Google Scholar 

  54. Gharibi R, Yeganeh H, Rezapour-Lactoee A, Hassan ZM. ACS Appl Mater Interfaces, 2015, 7: 24296–24311

    Article  CAS  PubMed  Google Scholar 

  55. Guo B, Dong R, Liang Y, Li M. Nat Rev Chem, 2021, 5: 773–791

    Article  CAS  Google Scholar 

  56. O’Brien FJ. Mater Today, 2011, 14: 88–95

    Article  Google Scholar 

  57. Zhao X, Guo B, Wu H, Liang Y, Ma PX. Nat Commun, 2018, 9: 2784

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L, Cheng H, Xia L, Xie S, Ye W, Shi Z, Yang G. Adv Healthcare Mater, 2020, 9: 2000872

    Article  CAS  Google Scholar 

  59. Chen L, Xing Q, Zhai Q, Tahtinen M, Zhou F, Chen L, Xu Y, Qi S, Zhao F. Theranostics, 2017, 7: 117–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jeong SH, Lee Y, Lee MG, Song WJ, Park JU, Sun JY. Nano Energy, 2021, 79: 105463

    Article  CAS  Google Scholar 

  61. Kabashima K, Honda T, Ginhoux F, Egawa G. Nat Rev Immunol, 2019, 19: 19–30

    Article  CAS  PubMed  Google Scholar 

  62. Chen G, Yu Y, Wu X, Wang G, Ren J, Zhao Y. Adv Funct Mater, 2018, 28: 1801386

    Article  Google Scholar 

  63. Kong X, Fu J, Shao K, Wang L, Lan X, Shi J. Acta Biomater, 2019, 100: 255–269

    Article  CAS  PubMed  Google Scholar 

  64. Talikowska M, Fu X, Lisak G. Biosens Bioelectron, 2019, 135: 50–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51973172), Natural Science Foundation of Shaanxi Province (2020JC-03, 2019TD-020), the State Key Laboratory for Mechanical Behavior of Materials, the World-Class Universities (Disciplines) and Characteristic Development Guidance Funds for the Central Universities, Fundamental Research Funds for the Central Universities and the Opening Project of the Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University (2019LHM-KFKT008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolin Guo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, R., Li, Z., Pan, G. et al. Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing. Sci. China Chem. 65, 2238–2251 (2022). https://doi.org/10.1007/s11426-022-1322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1322-5

Keywords

Navigation