Skip to main content
Log in

Electromagnetic field-enhanced chiral dimanganese trioxide nanoparticles mitigate Parkinson’s disease

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The misfolding and aggregation of α-synuclein (α-syn) is closely associated with Parkinson’s disease (PD). Here, chiral dimanganese trioxide (Mn2O3) nanoparticles (NPs) were prepared for PD treatment enhanced by a noninvasive electromagnetic field (MF). The affinity constants of D-NPs toward α-syn monomer (mono) or α-syn fibril were 3.5 times or 5.2 times higher, respectively, than those of L-NPs, and the mechanical force generated by NPs under a MF further promoted the interaction between NPs and α-syn to amplify the difference between L-NPs and D-NPs. As the synergy effect of the preferentially affinity ability and MF-induced mechanical forces, D-NPs exhibited a better inhibitory efficiency on α-syn fibrillization than L-NPs. Furthermore, after differentially cellular uptake of L-/D-NPs via the caveolin-mediated pathway, as reactive oxygen species (ROS)-scavengers, D-NPs possess higher efficiency in decreasing intracellular ROS level than L-NPs to provide higher cytoprotective efficiency to neuron cells. In vivo data showed that after treatment with D-NPs under a MF for 60 days, α-syn concentration in the cerebrospinal fluid of PD mice decreased 81%, while dopamine level in the brain of PD mice increased 2.3-fold. These findings indicated the potential of utilizing the synergic interplay of chiral NPs and MF for treating disease and opened a new path to explore the nanoscale chirality for regulating the biological effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemprière S. Nat Rev Neurol, 2020, 16: 242–243

    Article  PubMed  Google Scholar 

  2. Ascherio A, Schwarzschild MA. Lancet Neurol, 2016, 15: 1257–1272

    Article  PubMed  Google Scholar 

  3. Myszczynska MA, Ojamies PN, Lacoste AMB, Neil D, Saffari A, Mead R, Hautbergue GM, Holbrook JD, Ferraiuolo L. Nat Rev Neurol, 2020, 16: 440–456

    Article  PubMed  Google Scholar 

  4. Robotta M, Cattani J, Martins JC, Subramaniam V, Drescher M. J Am Chem Soc, 2017, 139: 4254–4257

    Article  CAS  PubMed  Google Scholar 

  5. Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Brain, 2015, 138: 1642–1657

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shvadchak VV, Afitska K, Yushchenko DA. Angew Chem Int Ed, 2018, 57: 5690–5694

    Article  CAS  Google Scholar 

  7. Levine PM, Galesic A, Balana AT, Mahul-Mellier AL, Navarro MX, De Leon CA, Lashuel HA, Pratt MR. Proc Natl Acad Sci USA, 2019, 116: 1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, Zhang H, Lei Z, Zhang F. Small Struct, 2020, 1: 2000036

    Article  Google Scholar 

  9. Sun M, Wang X, Guo X, Xu L, Kuang H, Xu C. Chem Sci, 2022, 13: 3069–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan Y, Wang S, Zhang F. Angew Chem Int Ed, 2019, 58: 13208–13219

    Article  CAS  Google Scholar 

  11. Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, Zheng Y, El-Toni AM, Atta NF, Galal A, Cheng Y, Cai X, Wang Y, Zhang F. ACS Nano, 2021, 15: 2263–2280

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Wang S, Yu P, Yan K, Ming J, Yao C, He Z, El-Toni AM, Khan A, Zhu X, Sun C, Lei Z, Zhang F. Chem Sci, 2021, 12: 10474–10482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pei P, Hu H, Chen Y, Wang S, Chen J, Ming J, Yang Y, Sun C, Zhao S, Zhang F. Nano Lett, 2022, 22: 783–791

    Article  CAS  PubMed  Google Scholar 

  14. Sun C, Sun X, Pei P, He H, Ming J, Liu X, Liu M, Zhang Y, Xia Y, Zhao D, Li X, Xie Y, Zhang F. Adv Funct Mater, 2021, 31: 2100656

    Article  CAS  Google Scholar 

  15. Wang P, Fan Y, Lu L, Liu L, Fan L, Zhao M, Xie Y, Xu C, Zhang F. Nat Commun, 2018, 9: 2898

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu Y, Zhang F. View, 2020, 1: 20200068

    Article  Google Scholar 

  17. Hou K, Zhao J, Wang H, Li B, Li K, Shi X, Wan K, Ai J, Lv J, Wang D, Huang Q, Wang H, Cao Q, Liu S, Tang Z. Nat Commun, 2020, 11: 4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qu A, Sun M, Kim JY, Xu L, Hao C, Ma W, Wu X, Liu X, Kuang H, Kotov NA, Xu C. Nat Biomed Eng, 2021, 5: 103–113

    Article  CAS  PubMed  Google Scholar 

  19. Hao C, Qu A, Xu L, Sun M, Zhang H, Xu C, Kuang H. J Am Chem Soc, 2019, 141: 1091–1099

    Article  CAS  PubMed  Google Scholar 

  20. Yeom J, Santos US, Chekini M, Cha M, de Moura AF, Kotov NA. Science, 2018, 359: 309–314

    Article  CAS  PubMed  Google Scholar 

  21. Jiang W, Pacella MS, Vali H, Gray JJ, McKee MD. Sci Adv, 2018, 4: eaas9819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Urban MJ, Shen C, Kong XT, Zhu C, Govorov AO, Wang Q, Hentschel M, Liu N. Annu Rev Phys Chem, 2019, 70: 275–299

    Article  CAS  PubMed  Google Scholar 

  23. Xiao L, An T, Wang L, Xu X, Sun H. Nano Today, 2020, 30: 100824

    Article  CAS  Google Scholar 

  24. Wang X, Sun M, Qu A, Wang W, Lu M, Guo X, Chen C, Hao C, Xu L, Xu C, Kuang H. Angew Chem Int Ed, 2021, 60: 18240–18246

    Article  CAS  Google Scholar 

  25. Xu L, Wang X, Wang W, Sun M, Choi WJ, Kim JY, Hao C, Li S, Qu A, Lu M, Wu X, Colombari FM, Gomes WR, Blanco AL, de Moura AF, Guo X, Kuang H, Kotov NA, Xu C. Nature, 2022, 601: 366–373

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Sun M, Hao C, Qu A, Wu X, Xu L, Xu C, Kuang H. Angew Chem Int Ed, 2020, 59: 13915–13922

    Article  CAS  Google Scholar 

  27. Shi B, Qu A, Wang W, Lu M, Xu Z, Chen C, Hao C, Sun M, Xu L, Xu C, Kuang H. CCS Chem, 2022, 4: 2440–2451

    Article  CAS  Google Scholar 

  28. Zhang H, Hao C, Qu A, Sun M, Xu L, Xu C, Kuang H. Angew Chem Int Ed, 2020, 59: 7131–7138

    Article  CAS  Google Scholar 

  29. Lee JH, Park JE, Han JS. J Ethnopharmacol, 2020, 260: 112973

    Article  CAS  PubMed  Google Scholar 

  30. Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G. Angew Chem Int Ed, 2017, 56: 14267–14271

    Article  CAS  Google Scholar 

  31. Ding B, Zheng P, Ma P, Lin J. Adv Mater, 2020, 32: 1905823

    Article  CAS  Google Scholar 

  32. Liu YQ, Mao Y, Xu E, Jia H, Zhang S, Dawson VL, Dawson TM, Li YM, Zheng Z, He W, Mao X. Nano Today, 2021, 36: 101027

    Article  CAS  Google Scholar 

  33. Liu H, Han Y, Wang T, Zhang H, Xu Q, Yuan J, Li Z. J Am Chem Soc, 2020, 142: 21730–21742

    Article  CAS  PubMed  Google Scholar 

  34. Kikas P, Chalikias G. Eur Cardiol Rev, 2018, 13: 42–45

    Article  Google Scholar 

  35. Xu Z, Qu A, Wang W, Lu M, Shi B, Chen C, Hao C, Xu L, Sun M, Xu C, Kuang H. Adv Healthc Mater, 2021, 10: 2101316

    Article  CAS  Google Scholar 

  36. Wagner T, Valbusa D, Bigiani L, Barreca D, Gasparotto A, Maccato C. Surf Sci Spectra, 2020, 27: 024004

    Article  CAS  Google Scholar 

  37. Ma W, Xu L, de Moura AF, Wu X, Kuang H, Xu C, Kotov NA. Chem Rev, 2017, 117: 8041–8093

    Article  CAS  PubMed  Google Scholar 

  38. Boyer DR, Li B, Sun C, Fan W, Zhou K, Hughes MP, Sawaya MR, Jiang L, Eisenberg DS. Proc Natl Acad Sci USA, 2020, 117: 3592–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McGlinchey RP, Ni X, Shadish JA, Jiang J, Lee JC. Proc Natl Acad Sci USA, 2021, 118: 34452994

    Article  Google Scholar 

  40. Meade RM, Fairlie DP, Mason JM. Mol Neurodegener, 2019, 14: 29

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hao C, Gao R, Li Y, Xu L, Sun M, Xu C, Kuang H. Angew Chem Int Ed, 2019, 58: 7371–7374

    Article  CAS  Google Scholar 

  42. Yeom J, Guimaraes PPG, Ahn HM, Jung BK, Hu Q, McHugh K, Mitchell MJ, Yun CO, Langer R, Jaklenec A. Adv Mater, 2020, 32: 1903878

    Article  CAS  Google Scholar 

  43. Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP, Park MJ, Lee MJ, Choi S, Kwon SH, Lee S, Kwon SH, Kim S, Park YJ, Kinoshita M, Lee YH, Shin S, Paik SR, Lee SJ, Lee S, Hong BH, Ko HS. Nat Nanotech, 2018, 13: 812–818

    Article  CAS  Google Scholar 

  44. Wang S, Guo X, Xiu W, Liu Y, Ren L, Xiao H, Yang F, Gao Y, Xu C, Wang L. Sci Adv, 2020, 6: eaaz8204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uzhytchak M, Lynnyk A, Zablotskii V, Dempsey NM, Dias AL, Bonfim M, Lunova M, Jirsa M, Kubinová Š, Lunov O, Dejneka A. Appl Phys Lett, 2017, 111: 243703

    Article  Google Scholar 

  46. Coey JMD. Magnetism and Magnetic Materials. Cambridge: Cambridge University Press, 2010

    Google Scholar 

  47. Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, Soh M, Hyeon T. Angew Chem Int Ed, 2018, 57: 9408–9412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32071400, 51902136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguang Xu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhao, J., Wang, W. et al. Electromagnetic field-enhanced chiral dimanganese trioxide nanoparticles mitigate Parkinson’s disease. Sci. China Chem. 65, 1911–1920 (2022). https://doi.org/10.1007/s11426-022-1321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1321-0

Keywords

Navigation