Abstract
Poly-ion complex (PIC) integrating non-antibiotic theranostics holds great promise in the combat against drug-resistant bacteria. Photosensitizers with aggregation-induced emission (AIE) characteristic are particularly intriguing theranostic agents, but incorporating them into antibacterial PIC to enable both fluorescence and reactive oxygen species (ROS) generation turn-on deems a great challenge. Here we report the development of a PIC that can dually boost the fluorescence and ROS generation in the presence of pathogen bacteria. The PIC is constructed based on an anionic polydiacetylene poly(deca-4,6-diynedioic acid) (PDDA), which completely degrades in the presence of ROS. A cationic polymer quaternized poly(2-(dimethylamino)ethyl methacrylate) (PQDMA) that can disrupt bacterial membrane is co-loaded together with a highly efficient AIE photosensitizer TPCI in the PIC. PIC is nonfluorescent initially in that PDDA can quench the AIE of TPCI in PIC. When pathogenic bacteria are present, they can disturb the assembly of PIC to release TPCI, the fluorescence of which turns on sensitively to indicate the existence of bacteria. The on-demand irradiation can be subsequently applied to excite TPCI, which generates ROS to degrade PDDA and deform the PIC. As a result, TPCI and PQDMA are completely released to eliminate bacteria through a synergy of turned-on photodynamic therapy (PDT) and membrane disruption. The highly efficient detection and inhibition against both Gram-negative and Gram-positive bacteria have validated this polydiacetylene-based PIC system as an effective non-antibiotic antibacterial theranostic platform as well as a new strategy to enable “turn-on” fluorescence sensing and imaging of AIE fluorophores.

This is a preview of subscription content, access via your institution.
References
Lewis K. Nat Rev Drug Discov, 2013, 12: 371–387
Aminov RI. Front Microbiol, 2010, 1: 134
Gaynes R. Emerg Infect Dis, 2017, 23: 849–853
Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJV, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI. Nat Rev Microbiol, 2011, 9: 894–896
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Nat Rev Microbiol, 2015, 13: 42–51
Neu HC. Science, 1992, 257: 1064–1073
Nathan C, Cars O. N Engl J Med, 2014, 371: 1761–1763
Cattoir V, Felden B. J Infect Dis, 2019, 220: 350–360
Wang Y, Yang Y, Shi Y, Song H, Yu C. Adv Mater, 2020, 32: 1904106
Livermore DM. Lancet Infect Dis, 2005, 5: 450–459
Chernousova S, Epple M. Angew Chem Int Ed, 2013, 52: 1636–1653
Qi L, Xu Z, Jiang X, Hu C, Zou X. Carbohydr Res, 2004, 339: 2693–2700
Sudarshan NR, Hoover DG, Knorr D. Food Biotechnol, 1992, 6: 257–272
Hilpert K, Volkmer-Engert R, Walter T, Hancock REW. Nat Biotechnol, 2005, 23: 1008–1012
Boman HG. J Intern Med, 2003, 254: 197–215
Deka SR, Sharma AK, Kumar P. Curr Trends Med Chem, 2015, 15: 1179–1195
Guo J, Qin J, Ren Y, Wang B, Cui H, Ding Y, Mao H, Yan F. Polym Chem, 2018, 9: 4611–4616
Xu JW, Yao K, Xu ZK. Nanoscale, 2019, 11: 8680–8691
Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. J Control Release, 2020, 328: 251–262
Liu Y, Qin R, Zaat SAJ, Breukink E, Heger M. J Clin Transl Res, 2015, 1: 140–167
Cao S, Shao J, Abdelmohsen LKEA, Hest JCM. Aggregate, 2022, 3: e128
Ding X, Duan S, Ding X, Liu R, Xu FJ. Adv Funct Mater, 2018, 28: 1802140
Cloutier M, Mantovani D, Rosei F. Trends Biotechnol, 2015, 33: 637–652
Mura S, Nicolas J, Couvreur P. Nat Mater, 2013, 12: 991–1003
Zheng P, Liu Y, Chen J, Xu W, Li G, Ding J. Chin Chem Lett, 2020, 31: 1178–1182
Janib SM, Moses AS, MacKay JA. Adv Drug Deliver Rev, 2010, 62: 1052–1063
Xie J, Lee S, Chen X. Adv Drug Deliver Rev, 2010, 62: 1064–1079
Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Acc Chem Res, 2011, 44: 1029–1038
Wang L, Li LL, Ma HL, Wang H. Chin Chem Lett, 2013, 24: 351–358
Traba C, Liang JF. J Control Release, 2015, 198: 18–25
Wei T, Yu Q, Chen H. Adv Healthcare Mater, 2019, 8: 1801381
Moorcroft SCT, Jayne DG, Evans SD, Ong ZY. Macromol Biosci, 2018, 18: 1800207
Li Q, Zhang Y, Huang X, Yang D, Weng L, Ou C, Song X, Dong X. Chem Eng J, 2021, 407: 127200
Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L. Molecules, 2019, 24: 1991
Pang Q, Zheng X, Luo Y, Ma L, Gao C. J Mater Chem B, 2017, 5: 8975–8982
Amstad E, Kim SH, Weitz DA. Angew Chem Int Ed, 2012, 51: 12499–12503
Pitt WG, Husseini GA, Staples BJ. Expert Opin Drug Deliver, 2004, 1: 37–56
Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ. Biomaterials, 2017, 119: 78–85
Parisi OI, Scrivano L, Sinicropi MS, Puoci F. Curr Opin Pharmacol, 2017, 36: 72–77
Leung NLC, Xie N, Yuan W, Liu Y, Wu Q, Peng Q, Miao Q, Lam JWY, Tang BZ. Chem Eur J, 2014, 20: 15349–15353
Zeng Q, Li Z, Dong Y, Di C, Qin A, Hong Y, Ji L, Zhu Z, Jim CKW, Yu G, Li Q, Li Z, Liu Y, Qin J, Tang BZ. Chem Commun, 2007, 1: 70–72
Kang M, Zhang Z, Song N, Li M, Sun P, Chen X, Wang D, Tang BZ. Aggregate, 2020, 1: 80–106
Lou X, Yang Y. Aggregate, 2020, 1: 19–30
Tian S, Yue Q, Liu C, Li M, Yin M, Gao Y, Meng F, Tang BZ, Luo L. J Am Chem Soc, 2021, 143: 10054–10058
Li Y, Hu X, Tian S, Li Y, Zhang G, Zhang G, Liu S. Biomaterials, 2014, 35: 1618–1626
Tian S, Liu G, Wang X, Wu T, Yang J, Ye X, Zhang G, Hu J, Liu S. ACS Appl Mater Interfaces, 2016, 8: 3693–3702
Tian S, Li H, Li Z, Tang H, Yin M, Chen Y, Wang S, Gao Y, Yang X, Meng F, Lauher JW, Wang P, Luo L. Nat Commun, 2020, 11: 81
Gao Y, Wang X, He X, He Z, Yang X, Tian S, Meng F, Ding D, Luo L, Tang BZ. Adv Funct Mater, 2019, 29: 1902673
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21877042, 22077038, 22107032), the National Basic Research Plan of China (2018YFA0208903), Postdoctoral Research Foundation of China (2017M622454, 2020T130038ZX), and Huazhong University Startup Fund.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest The authors declare no conflict of interest.
Additional information
Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Electronic supplementary material
11426_2022_1317_MOESM1_ESM.pdf
Polydiacetylene-Based Poly-Ion Complex Enabling Aggregation-Induced Emission and Photodynamic Therapy Dual Turn-on for On-Demand Pathogenic Bacteria Elimination
Rights and permissions
About this article
Cite this article
Tian, S., Lu, Y., He, Z. et al. Polydiacetylene-based poly-ion complex enabling aggregation-induced emission and photodynamic therapy dual turn-on for on-demand pathogenic bacteria elimination. Sci. China Chem. 65, 1782–1790 (2022). https://doi.org/10.1007/s11426-022-1317-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-022-1317-0
Keywords
- poly-ion complex
- ROS responsive
- polydiacetylene
- photodynamic therapy
- aggregation-induced emission