Skip to main content
Log in

Multi-twinned gold nanoparticles with tensile surface steps for efficient electrocatalytic CO2 reduction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

CO2 reduction reactions (CO2RR) powered by renewable electricity can directly convert CO2 to hydrocarbons and fix the intermittent sustainable energy in portable chemical fuels. It is of great importance to develop advanced catalysts that can boost CO2RR with high activity, selectivity, and efficiency at low overpotentials. Here, we report the solution synthesis using H2O2 to modify the surface structures of gold multi-twinned nanoparticles (AuMPs) and create tensile surface steps. Calculations predicted significantly enhanced CO2 adsorption and boosted CO2RR capabilities with inhibited hydrogen evolution reaction activity for the tensile surface steps with modified electronic structure. The H2O2-treated AuMPs with surface steps and 3.83% tensile lattices showed much higher activity and selectivity at lower overpotentials for CO2RR than pristine gold nanoparticles. The CO-production current density reached about 98 mA cm−2 with a Faradaic efficiency of 95.7% at −0.30 V versus reversible hydrogen electrode in the flow cell, showing a half-cell energy efficiency as high as ∼83%. Our strategy represents a rational catalyst design by engineering the surface structures of metal nanoparticles and may find more applicability in future electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X. J Am Chem Soc, 2015, 137: 4288–4291

    Article  CAS  PubMed  Google Scholar 

  2. Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo JL. J Am Chem Soc, 2017, 139: 2160–2163

    Article  CAS  PubMed  Google Scholar 

  3. Gu J, Hsu CS, Bai L, Chen HM, Hu X. Science, 2019, 364: 1091–1094

    Article  CAS  PubMed  Google Scholar 

  4. Asadi M, Kim K, Liu C, Addepalli AV, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato JM, Haasch R, Zapol P, Kumar B, Klie RF, Abiade J, Curtiss LA, Salehi-Khojin A. Science, 2016, 353: 467–470

    Article  CAS  PubMed  Google Scholar 

  5. Jiang K, Siahrostami S, Akey AJ, Li Y, Lu Z, Lattimer J, Hu Y, Stokes C, Gangishetty M, Chen G, Zhou Y, Hill W, Cai WB, Bell D, Chan K, Nørskov JK, Cui Y, Wang H. Chem, 2017, 3: 950–960

    Article  CAS  Google Scholar 

  6. Ross MB, De Luna P, Li Y, Dinh CT, Kim D, Yang P, Sargent EH. Nat Catal, 2019, 2: 648–658

    Article  CAS  Google Scholar 

  7. Goyal A, Marcandalli G, Mints VA, Koper MTM. J Am Chem Soc, 2020, 142: 4154–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun K, Cheng T, Wu L, Hu Y, Zhou J, Maclennan A, Jiang Z, Gao Y, Goddard Iii WA, Wang Z. J Am Chem Soc, 2017, 139: 15608–15611

    Article  CAS  PubMed  Google Scholar 

  9. Kim D, Resasco J, Yu Y, Asiri AM, Yang P. Nat Commun, 2014, 5: 4948

    Article  CAS  PubMed  Google Scholar 

  10. Fang Y, Flake JC. J Am Chem Soc, 2017, 139: 3399–3405

    Article  CAS  PubMed  Google Scholar 

  11. Trindell JA, Clausmeyer J, Crooks RM. J Am Chem Soc, 2017, 139: 16161–16167

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Li CW, Kanan MW. J Am Chem Soc, 2012, 134: 19969–19972

    Article  CAS  PubMed  Google Scholar 

  13. Zhu W, Michalsky R, Metin Ö, Lv H, Guo S, Wright CJ, Sun X, Peterson AA, Sun S. J Am Chem Soc, 2013, 135: 16833–16836

    Article  CAS  PubMed  Google Scholar 

  14. Zhu W, Zhang YJ, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S. J Am Chem Soc, 2014, 136: 16132–16135

    Article  CAS  PubMed  Google Scholar 

  15. Feng X, Jiang K, Fan S, Kanan MW. J Am Chem Soc, 2015, 137: 4606–4609

    Article  CAS  PubMed  Google Scholar 

  16. Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH. Nature, 2016, 537: 382–386

    Article  CAS  PubMed  Google Scholar 

  17. Liu Q, Yang X, Li L, Miao S, Li Y, Li Y, Wang X, Huang Y, Zhang T. Nat Commun, 2017, 8: 1407

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mariano RG, McKelvey K, White HS, Kanan MW. Science, 2017, 358: 1187–1192

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Chen G, Zhu Y, Liang Z, Pei A, Wu CL, Wang H, Lee HR, Liu K, Chu S, Cui Y. Nat Catal, 2018, 1: 592–600

    Article  CAS  Google Scholar 

  20. Liu M, Liu M, Wang X, Kozlov SM, Cao Z, De Luna P, Li H, Qiu X, Liu K, Hu J, Jia C, Wang P, Zhou H, He J, Zhong M, Lan X, Zhou Y, Wang Z, Li J, Seifitokaldani A, Dinh CT, Liang H, Zou C, Zhang D, Yang Y, Chan TS, Han Y, Cavallo L, Sham TK, Hwang BJ, Sargent EH. Joule, 2019, 3: 1703–1718

    Article  CAS  Google Scholar 

  21. Yuan X, Zhang L, Li L, Dong H, Chen S, Zhu W, Hu C, Deng W, Zhao ZJ, Gong J. J Am Chem Soc, 2019, 141: 4791–4794

    Article  CAS  PubMed  Google Scholar 

  22. Cao Z, Kim D, Hong D, Yu Y, Xu J, Lin S, Wen X, Nichols EM, Jeong K, Reimer JA, Yang P, Chang CJ. J Am Chem Soc, 2016, 138: 8120–8125

    Article  CAS  PubMed  Google Scholar 

  23. Gao D, Zhang Y, Zhou Z, Cai F, Zhao X, Huang W, Li Y, Zhu J, Liu P, Yang F, Wang G, Bao X. J Am Chem Soc, 2017, 139: 5652–5655

    Article  CAS  PubMed  Google Scholar 

  24. Tang C, Shi J, Bai X, Hu A, Xuan N, Yue Y, Ye T, Liu B, Li P, Zhuang P, Shen J, Liu Y, Sun Z. ACS Catal, 2020, 10: 2026–2032

    Article  CAS  Google Scholar 

  25. Cheng H, Yang N, Liu G, Ge Y, Huang J, Yun Q, Du Y, Sun CJ, Chen B, Liu J, Zhang H. Adv Mater, 2020, 32: 1902964

    Article  CAS  Google Scholar 

  26. Li Z, Fu JY, Feng Y, Dong CK, Liu H, Du XW. Nat Catal, 2019, 2: 1107–1114

    Article  CAS  Google Scholar 

  27. Wang H, Xu S, Tsai C, Li Y, Liu C, Zhao J, Liu Y, Yuan H, Abild-Pedersen F, Prinz FB, Nørskov JK, Cui Y. Science, 2016, 354: 1031–1036

    Article  CAS  PubMed  Google Scholar 

  28. Xia Y, Xiong Y, Lim B, Skrabalak SE. Angew Chem Int Ed, 2009, 48: 60–103

    Article  CAS  Google Scholar 

  29. Ma Y, Zeng J, Li W, McKiernan M, Xie Z, Xia Y. Adv Mater, 2010, 22: 1930–1934

    Article  CAS  PubMed  Google Scholar 

  30. Walsh MJ, Yoshida K, Kuwabara A, Pay ML, Gai PL, Boyes ED. Nano Lett, 2012, 12: 2027–2031

    Article  CAS  PubMed  Google Scholar 

  31. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Nat Chem, 2009, 1: 37–46

    Article  PubMed  Google Scholar 

  32. Huang H, Jia H, Liu Z, Gao P, Zhao J, Luo Z, Yang J, Zeng J. Angew Chem Int Ed, 2017, 56: 3594–3598

    Article  CAS  Google Scholar 

  33. Luo M, Zhao Z, Zhang Y, Sun Y, Xing Y, Lv F, Yang Y, Zhang X, Hwang S, Qin Y, Ma JY, Lin F, Su D, Lu G, Guo S. Nature, 2019, 574: 81–85

    Article  CAS  PubMed  Google Scholar 

  34. Ross MB, Dinh CT, Li Y, Kim D, De Luna P, Sargent EH, Yang P. J Am Chem Soc, 2017, 139: 9359–9363

    Article  CAS  PubMed  Google Scholar 

  35. Shi C, Hansen HA, Lausche AC, Nørskov JK. Phys Chem Chem Phys, 2014, 16: 4720–4727

    Article  CAS  PubMed  Google Scholar 

  36. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Science, 2017, 355: eaad4998

    Article  PubMed  Google Scholar 

  37. Yang HB, Hung SF, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang HY, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B. Nat Energy, 2018, 3: 140–147

    Article  CAS  Google Scholar 

  38. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  40. Hammer B, Hansen LB, Nørskov JK. Phys Rev B, 1999, 59: 7413–7421

    Article  Google Scholar 

  41. Grimme S. J Comput Chem, 2006, 27: 1787–1799

    Article  CAS  PubMed  Google Scholar 

  42. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK. Energy Environ Sci, 2010, 3: 1311–1315

    Article  CAS  Google Scholar 

  43. Wang M, Shi H, Tian M, Chen R, Shu J, Zhang Q, Wang Y, Li C, Wan N, Lei S. ACS Appl Nano Mater, 2021, 4: 11017–11030

    Article  CAS  Google Scholar 

  44. Wang M, Song R, Zhang Q, Li C, Xu Z, Liu G, Wan N, Lei S. Fuel, 2022, 321: 124101

    Article  CAS  Google Scholar 

  45. Monzó J, Malewski Y, Kortlever R, Vidal-Iglesias FJ, Solla-Gullón J, Koper MTM, Rodriguez P. J Mater Chem A, 2015, 3: 23690–23698

    Article  Google Scholar 

  46. Adit Maark T, Nanda BRK. J Phys Chem C, 2017, 121: 4496–4504

    Article  CAS  Google Scholar 

  47. Jansonius RP, Reid LM, Virca CN, Berlinguette CP. ACS Energy Lett, 2019, 4: 980–986

    Article  CAS  Google Scholar 

  48. Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM, García de Arquer FP, Kiani A, Edwards JP, De Luna P, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH. Science, 2018, 360: 783–787

    Article  CAS  PubMed  Google Scholar 

  49. Luo M, Wang Z, Li YC, Li J, Li F, Lum Y, Nam DH, Chen B, Wicks J, Xu A, Zhuang T, Leow WR, Wang X, Dinh CT, Wang Y, Wang Y, Sinton D, Sargent EH. Nat Commun, 2019, 10: 5814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. García de Arquer FP, Dinh CT, Ozden A, Wicks J, McCallum C, Kirmani AR, Nam DH, Gabardo C, Seifitokaldani A, Wang X, Li YC, Li F, Edwards J, Richter LJ, Thorpe SJ, Sinton D, Sargent EH. Science, 2020, 367: 661–666

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Analytical and Testing Center of BIT for technical support. We acknowledge the financial support from the National Natural Science Foundation of China (21971012, 21922502, and 21971017), the National Key Research and Development Program of China (2020YFB1506300), the Beijing Municipal Natural Science Foundation (JQ20007), and the Beijing Institute of Technology Research Fund Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Xiang Yin.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LW., Hao, YC., Li, J. et al. Multi-twinned gold nanoparticles with tensile surface steps for efficient electrocatalytic CO2 reduction. Sci. China Chem. 65, 2188–2196 (2022). https://doi.org/10.1007/s11426-022-1315-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1315-x

Keywords

Navigation