Skip to main content
Log in

A molecular brake hoop for the motion of metal atoms inside fullerene cage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Molecular machines have attracted extensive attention due to their fancy concept and their potential to influence the science and technology. The dynamic motion of encapsulated metallic clusters is a distinctive character for endohedral metallofullerenes. For the development of molecular rotors based on metallofullerenes, the most challenging issue is how to control the motion of untouchable metallic cluster inside fullerene cage. In this work, we report a molecular brake hoop for the motion of metal atoms inside fullerene cage. A cycloparaphenylene of [12]CPP was employed to hoop the metallofullerene and produce two supramolecular complexes of Sc3N@C80⊂[12]CPP and Sc2C2@C82⊂[12]CPP. Moreover, the temperature-dependent 45Sc nuclear magnetic resonance spectroscopy (NMR) was employed to detect the motion of internal Sc3N and Sc2C2 clusters. 45Sc NMR results reveal that the [12]CPP can slow down the rotation of internal metallic cluster through host-guest interaction, and thus the [12]CPP can be considered as a molecular brake hoop for the internal metal motion of metallofullerenes. Furthermore, by means of this molecular brake hoop, the motion of metal atoms inside fullerene cage have expanded range of velocity. In addition, theoretical calculations on Sc3N@C80⊂[12]CPP were executed to illustrate the molecular orientation as well as internal Sc3N rotation. This study would promote the research of endohedral metallofullerene as a molecular rotor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balzani V, Credi A, Raymo F, Stoddart J. Angew Chem Int Ed, 2000, 39: 3348–3391

    Article  CAS  Google Scholar 

  2. Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Chem Rev, 2020, 120: 310–433

    Article  CAS  Google Scholar 

  3. Kornack TW, Ghosh RK, Romalis MV. Phys Rev Lett, 2005, 95: 230801

    Article  CAS  Google Scholar 

  4. Kitching J, Knappe S, Donley EA. IEEE Sens J, 2011, 11: 1749–1758

    Article  CAS  Google Scholar 

  5. Krause M, Hulman M, Kuzmany H, Dubay O, Kresse G, Vietze K, Seifert G, Wang C, Shinohara H. Phys Rev Lett, 2004, 93: 137403

    Article  CAS  Google Scholar 

  6. Fu W, Xu L, Azurmendi H, Ge J, Fuhrer T, Zuo T, Reid J, Shu C, Harich K, Dorn HC. J Am Chem Soc, 2009, 131: 11762–11769

    Article  CAS  Google Scholar 

  7. Wang TS, Feng L, Wu JY, Xu W, Xiang JF, Tan K, Ma YH, Zheng JP, Jiang L, Lu X, Shu CY, Wang CR. J Am Chem Soc, 2010, 132: 16362–16364

    Article  CAS  Google Scholar 

  8. Zhang Y, Krylov D, Rosenkranz M, Schiemenz S, Popov AA. Chem Sci, 2015, 6: 2328–2341

    Article  CAS  Google Scholar 

  9. Akasaka T, Nagase S, Kobayashi K, Wälchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T. Angew Chem Int Ed, 1997, 36: 1643–1645

    Article  CAS  Google Scholar 

  10. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC. Nature, 1999, 401: 55–57

    Article  CAS  Google Scholar 

  11. Wang T, Wu J, Xu W, Xiang J, Lu X, Li B, Jiang L, Shu C, Wang C. Angew Chem Int Ed, 2010, 49: 1786–1789

    Article  CAS  Google Scholar 

  12. Ma Y, Wang T, Wu J, Feng Y, Li H, Jiang L, Shu C, Wang C. J Phys Chem Lett, 2013, 4: 464–467

    Article  CAS  Google Scholar 

  13. Wang T, Wang C. Acc Chem Res, 2014, 47: 450–458

    Article  CAS  Google Scholar 

  14. Li W, Wang C, Wang T. Chem Commun, 2021, 57: 10317–10326

    Article  CAS  Google Scholar 

  15. Feng Y, Wang T, Xiang J, Gan L, Wu B, Jiang L, Wang C. Dalton Trans, 2015, 44: 2057–2061

    Article  CAS  Google Scholar 

  16. Miyake Y, Suzuki S, Kojima Y, Kikuchi K, Kobayashi K, Nagase S, Kainosho M, Achiba Y, Maniwa Y, Fisher K. J Phys Chem, 1996, 100: 9579–9581

    Article  CAS  Google Scholar 

  17. Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL. J Am Chem Soc, 2009, 131: 11519–11524

    Article  CAS  Google Scholar 

  18. Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP. Sci Tech Adv Mater, 2019, 20: 51–95

    Article  CAS  Google Scholar 

  19. Darzi ER, Jasti R. Chem Soc Rev, 2015, 44: 6401–6410

    Article  CAS  Google Scholar 

  20. Peña Alvarez M, Mayorga Burrezo P, Kertesz M, Iwamoto T, Yamago S, Xia J, Jasti R, López Navarrete JT, Taravillo M, Baonza VG, Casado J. Angew Chem Int Ed, 2014, 53: 7033–7037

    Article  Google Scholar 

  21. Lewis SE. Chem Soc Rev, 2015, 44: 2221–2304

    Article  CAS  Google Scholar 

  22. Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Angew Chem Int Ed, 2011, 50: 8342–8344

    Article  CAS  Google Scholar 

  23. Nakanishi Y, Omachi H, Matsuura S, Miyata Y, Kitaura R, Segawa Y, Itami K, Shinohara H. Angew Chem Int Ed, 2014, 53: 3102–3106

    Article  CAS  Google Scholar 

  24. Yuan K, Guo YJ, Yang T, Dang JS, Zhao P, Li QZ, Zhao X. J Phys Org Chem, 2014, 27: 772–782

    Article  CAS  Google Scholar 

  25. González-Veloso I, Cabaleiro-Lago EM, Rodríguez-Otero J. Phys Chem Chem Phys, 2018, 20: 11347–11358

    Article  Google Scholar 

  26. Zhao C, Meng H, Nie M, Wang X, Cai Z, Chen T, Wang D, Wang C, Wang T. J Phys Chem C, 2019, 123: 12514–12520

    Article  CAS  Google Scholar 

  27. Xu Y, von Delius M. Angew Chem Int Ed, 2020, 59: 559–573

    Article  CAS  Google Scholar 

  28. Lu Y, Zhang J, Zhao C, Nie M, Wang C, Wang T. Sci China Chem, 2021, 64: 29–33

    Article  CAS  Google Scholar 

  29. Childs WJ, Steimle TCJ. Chem Phys, 1988, 88: 6168–6174

    CAS  Google Scholar 

  30. Wang X, Zuo T, Olmstead MM, Duchamp JC, Glass TE, Cromer F, Balch AL, Dorn HC. J Am Chem Soc, 2006, 128: 8884–8889

    Article  CAS  Google Scholar 

  31. Fu W, Wang X, Azuremendi H, Zhang J, Dorn HC. Chem Commun, 2011, 47: 3858–3860

    Article  CAS  Google Scholar 

  32. Zhang J, Zhao C, Meng H, Nie M, Li Q, Xiang J, Zhang Z, Wang C, Wang T. Carbon, 2020, 161: 694–701

    Article  CAS  Google Scholar 

  33. Popov AA, Dunsch L. J Am Chem Soc, 2008, 130: 17726–17742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51972309, 52022098), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Y201910), and Zhejiang Provincial Natural Science Foundation of China (LR22B010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taishan Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhao, C., Zhang, J. et al. A molecular brake hoop for the motion of metal atoms inside fullerene cage. Sci. China Chem. 65, 1601–1606 (2022). https://doi.org/10.1007/s11426-022-1302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1302-9

Keywords

Navigation