Skip to main content
Log in

Sensitized ligand narrow-band phosphorescence for high-efficiency solution-processed OLEDs

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Narrow-band emission is crucial for high color purity in panel display. Nevertheless, attaining narrow-band emission is highly challenging because either thermally activated delayed fluorescence or phosphorescence in organic and metal-organic compounds originates primarily from multiple charge transfer transitions featured with broad bandwidths. In this work, a general tactic for achieving highly efficient narrow-band emission is proposed by the sensitization of ligand-centered phosphorescence through substantial intermetallic interaction. Relative to weak phosphorescence in mononuclear Pt(II) precursors, highly efficient ligand-centered phosphorescence is dramatically activated in Pt(II)-Au(I) heteronuclear complexes with quantum yield as high as 81% in solutions and 97% in doping films. High-efficiency solution-processed organic light-emitting diodes (OLEDs) with narrow-band emission are successfully attained with external quantum efficiency (EQE) of 21.6% and a full width at half maxima (FWHM) of 36 nm for yellow electroluminescence and EQE of 20.8% and FWHM of 32 nm for green electroluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ha JM, Hur SH, Pathak A, Jeong JE, Woo HY. NPG Asia Mater, 2021, 13: 53

    Article  CAS  Google Scholar 

  2. de Jong M, Seijo L, Meijerink A, Rabouw FT. Phys Chem Chem Phys, 2015, 17: 16959–16969

    Article  CAS  Google Scholar 

  3. Li TY, Wu J, Wu ZG, Zheng YX, Zuo JL, Pan Y. Coord Chem Rev, 2018, 374: 55–92

    Article  CAS  Google Scholar 

  4. Li G, Fleetham T, Turner E, Hang XC, Li J. Adv Opt Mater, 2014, 3: 390–397

    Article  Google Scholar 

  5. Fleetham T, Li G, Wen L, Li J. Adv Mater, 2014, 26: 7116–7121

    Article  CAS  Google Scholar 

  6. Bünzli JCG, Piguet C. Chem Soc Rev, 2005, 34: 1048–1077

    Article  Google Scholar 

  7. Teng JM, Wang YF, Chen CF. J Mater Chem C, 2020, 8: 11340–11353

    Article  CAS  Google Scholar 

  8. Suresh SM, Hall D, Beljonne D, Olivier Y, Zysman-Colman E. Adv Funct Mater, 2020, 30: 1908677

    Article  Google Scholar 

  9. Patil VV, Lim J, Lee JY. ACS Appl Mater Interfaces, 2021, 13: 14440–14446

    Article  CAS  Google Scholar 

  10. Naveen KR, Hwang SJ, Lee H, Kwon JH. Adv Elect Mater, 2022, 8: 2101114

    Article  CAS  Google Scholar 

  11. Li Q, Wu Y, Wang X, Yang Q, Hu J, Zhong R, Shao S, Wang L. Chem Eur J, 2022, 28: doi: https://doi.org/10.1002/chem.202104214

  12. Ye X, Xu L, Qiu F, Ma Z, Wang B, Zhou J, Xiong S, Ma Y, Hu D, Tian G. Energy Fuels, 2021, 35: 19139–19145

    Article  CAS  Google Scholar 

  13. Liu G, Sasabe H, Kumada K, Matsunaga A, Katagiri H, Kido J. J Mater Chem C, 2021, 9: 8308–8313

    Article  CAS  Google Scholar 

  14. Qiu X, Xu L, Ying S, Ye X, Xu P, Wang B, Hu D, Ma D, Ma Y. J Mater Chem C, 2021, 9: 13697–13703

    Article  CAS  Google Scholar 

  15. Chen F, Lin Q, Shen H, Tang A. Mater Chem Front, 2020, 4: 1340–1365

    Article  CAS  Google Scholar 

  16. Dai X, Deng Y, Peng X, Jin Y. Adv Mater, 2017, 29: 1607022

    Article  Google Scholar 

  17. Jing CQ, Liu QL, Zhao CH, Zhao YY, Yue CY, Lei XW. J Mater Chem C, 2021, 9: 15047–15055

    Article  CAS  Google Scholar 

  18. Leng Z, Zhang D, Bai H, He H, Qing Q, Zhao J, Tang Z. J Mater Chem C, 2021, 9: 13722–13732

    Article  CAS  Google Scholar 

  19. Yang GL, Zhong HZ. Chin Chem Lett, 2016, 27: 1124–1130

    Article  CAS  Google Scholar 

  20. Tang MC, Chan AKW, Chan MY, Yam VWW. Top Curr Chem (Z), 2016, 374: 46

    Article  Google Scholar 

  21. Fleetham T, Li G, Li J. Adv Mater, 2017, 29: 1601861

    Article  Google Scholar 

  22. Bizzarri C, Spuling E, Knoll DM, Volz D, Bräse S. Coord Chem Rev, 2018, 373: 49–82

    Article  CAS  Google Scholar 

  23. Zhang QC, Xiao H, Zhang X, Xu LJ, Chen ZN. Coord Chem Rev, 2019, 378: 121–133

    Article  CAS  Google Scholar 

  24. Wang Q, Xiao H, Wu Y, Wang ZY, Zheng DS, Chen ZN. Chem Commun, 2020, 56: 10607–10620

    Article  CAS  Google Scholar 

  25. Xu LJ, Wang JY, Zhu XF, Zeng XC, Chen ZN. Adv Funct Mater, 2015, 25: 3033–3042

    Article  CAS  Google Scholar 

  26. Xu LJ, Zeng XC, Wang JY, Zhang LY, Chi Y, Chen ZN. ACS Appl Mater Interfaces, 2016, 8: 20251–20257

    Article  CAS  Google Scholar 

  27. Wang ZY, Zhang LY, Xu LJ, Shi LX, Wang JY, Chen ZN. ACS Appl Mater Interfaces, 2021, 13: 14433–14439

    Article  CAS  Google Scholar 

  28. Natarajan N, Shi LX, Xiao H, Wang JY, Zhang LY, Zhang X, Chen ZN. J Mater Chem C, 2019, 7: 2604–2614

    Article  CAS  Google Scholar 

  29. Wang ZY, Shi LX, Xu LJ, Zhang LY, Wang JY, Chen ZN. J Mater Chem C, 2021, 9: 5403–5410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92061202 and 21801242), the Fujian Science and Technology Project (2020L3022), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB20000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ning Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, JY., Zeng, H. et al. Sensitized ligand narrow-band phosphorescence for high-efficiency solution-processed OLEDs. Sci. China Chem. 65, 1559–1568 (2022). https://doi.org/10.1007/s11426-022-1301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1301-3

Keywords

Navigation