Skip to main content
Log in

Achieving improved stability and minimal non-radiative recombination loss for over 18% binary organic photovoltaics via versatile interfacial regulation strategy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Interfacial regulation, serving multiple roles, is critical for the fabrication of stable and efficient organic photovoltaics (OPVs). Herein, a multifunctional cathode interlayer PDINO (15 nm) is prepared by regulating film thickness, which is inserted between active components and stable silver electrode to align work function, and maintain good interfacial contact and device stability. The thick film can help to reduce interfacial surface defects, keep stable surface morphology, and block the silver diffusion into the active layer. Consequently, the optimal PM6:Y6 device records an impressive power conversion efficiency (PCE) of 17.48% with minimized non-radiative recombination loss of 0.239 V. More importantly, the unencapsulated device maintains 91% of the original PCE after aging for over 60 days at 25 °C and 10% relative humidity in dark conditions. Meanwhile, the PM6:eC9 device achieves a remarkable PCE of 18.22% with the enhancement of open-circuit voltage (Voc). Furthermore, the 1 cm2 device-based PDINO (15 nm)/Ag shows a high PCE of 15.2% while only 12.6% for PDINO (9 nm)/Al, indicating the good compatibility of PDINO (15 nm) interlayer with the R2R coating processes used in large-area OPVs fabrication. This work highlights the promise of interfacial regulation to simultaneously stabilize and enhance the efficiency of organic photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang Q, Zheng Z, Zu Y, Liao Q, Bi P, Zhang S, Yang Y, Xu B, Hou J. Joule, 2021, 5: 646–658

    Article  CAS  Google Scholar 

  2. Wang D, Qin R, Zhou G, Li X, Xia R, Li Y, Zhan L, Zhu H, Lu X, Yip HL, Chen H, Li CZ. Adv Mater, 2020, 32: 2001621

    Article  CAS  Google Scholar 

  3. Huang X, Zhang L, Cheng Y, Oh J, Li C, Huang B, Zhao L, Deng J, Zhang Y, Liu Z, Wu F, Hu X, Yang C, Chen L, Chen Y. Adv Funct Mater, 2021, 32: 2108634

    Article  CAS  Google Scholar 

  4. Qin F, Wang W, Sun L, Jiang X, Hu L, Xiong S, Liu T, Dong X, Li J, Jiang Y, Hou J, Fukuda K, Someya T, Zhou Y. Nat Commun, 2020, 11: 4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qin F, Sun L, Chen H, Liu Y, Lu X, Wang W, Liu T, Dong X, Jiang P, Jiang Y, Wang L, Zhou Y. Adv Mater, 2021, 33: 2103017

    Article  CAS  Google Scholar 

  6. Chen Z, Song W, Yu K, Ge J, Zhang J, Xie L, Peng R, Ge Z. Joule, 2021, 5: 2395–2407

    Article  CAS  Google Scholar 

  7. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  8. Chen H, Zhao T, Li L, Tan P, Lai H, Zhu Y, Lai X, Han L, Zheng N, Guo L, He F. Adv Mater, 2021, 33: 2102778

    Article  CAS  Google Scholar 

  9. Zhang L, Zhao H, Hu M, Wang X, Hu L, Mao H, Yuan Z, Ma W, Chen Y. Small, 2021, 17: 2103537

    Article  CAS  Google Scholar 

  10. Ma X, Zeng A, Gao J, Hu Z, Xu C, Son JH, Jeong SY, Zhang C, Li M, Wang K, Yan H, Ma Z, Wang Y, Woo HY, Zhang F. Natl Sci Rev, 2021, 8: nwaa305

    Article  PubMed  Google Scholar 

  11. Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020–3033

    Article  CAS  Google Scholar 

  12. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  13. Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y. J Am Chem Soc, 2020, 142: 1465–1474

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Zhang L, Hu L, Xie Z, Mao H, Tan L, Zhang Y, Chen Y. Adv Funct Mater, 2021, 31: 2102291

    Article  CAS  Google Scholar 

  15. Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv Mater, 2021, 33: 2007231

    Article  CAS  Google Scholar 

  16. Jiang K, Zhang J, Peng Z, Lin F, Wu S, Li Z, Chen Y, Yan H, Ade H, Zhu Z, Jen AKY. Nat Commun, 2021, 12: 468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin Y, Firdaus Y, Isikgor FH, Nugraha MI, Yengel E, Harrison GT, Hallani R, El-Labban A, Faber H, Ma C, Zheng X, Subbiah A, Howells CT, Bakr OM, McCulloch I, Wolf SD, Tsetseris L, Anthopoulos TD. ACS Energy Lett, 2020, 5: 2935–2944

    Article  CAS  Google Scholar 

  18. Xu G, Hu X, Liao X, Chen Y. Chin J Polym Sci, 2021, 39: 1441–1447

    Article  CAS  Google Scholar 

  19. Pan F, Sun C, Li Y, Tang D, Zou Y, Li X, Bai S, Wei X, Lv M, Chen X, Li Y. Energy Environ Sci, 2019, 12: 3400–3411

    Article  CAS  Google Scholar 

  20. Yao J, Qiu B, Zhang ZG, Xue L, Wang R, Zhang C, Chen S, Zhou Q, Sun C, Yang C, Xiao M, Meng L, Li Y. Nat Commun, 2020, 11: 2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen C, Xue P, Lu H, Wang J, Jia B, Li Y, Qin D, Lin Y, Zhan X. Energy Technol, 2021, 9: 2100281

    Article  CAS  Google Scholar 

  22. Burlingame Q, Ball M, Loo YL. Nat Energy, 2020, 5: 947–949

    Article  Google Scholar 

  23. Yang W, Wang W, Wang Y, Sun R, Guo J, Li H, Shi M, Guo J, Wu Y, Wang T, Lu G, Brabec CJ, Li Y, Min J. Joule, 2021, 5: 1209–1230

    Article  Google Scholar 

  24. Li S, Ma Q, Qiu B, Meng L, Zhang J, Wu Y, Zhang Z, Zhang ZG, Li Y. Sol RRL, 2021, 5: 2100515

    Article  CAS  Google Scholar 

  25. Zhang K, Guo J, Zhang L, Qin C, Yin H, Gao X, Hao X. Adv Funct Mater, 2021, 31: 2100316

    Article  CAS  Google Scholar 

  26. Qin Y, Balar N, Peng Z, Gadisa A, Angunawela I, Bagui A, Kashani S, Hou J, Ade H. Joule, 2021, 5: 2129–2147

    Article  CAS  Google Scholar 

  27. Zhang Z, Li Y, Cai G, Zhang Y, Lu X, Lin Y. J Am Chem Soc, 2020, 142: 18741–18745

    Article  CAS  PubMed  Google Scholar 

  28. Cai C, Yao J, Chen L, Yuan Z, Zhang ZG, Hu Y, Zhao X, Zhang Y, Chen Y, Li Y. Angew Chem Intl Ed, 2021, 60: 19053–19057

    Article  CAS  Google Scholar 

  29. Zhao C, Zhang Z, Han F, Xia D, Xiao C, Fang J, Zhang Y, Wu B, You S, Wu Y, Li W. Angew Chem Int Ed, 2021, 60: 8526–8531

    Article  CAS  Google Scholar 

  30. Liu M, Fan P, Hu Q, Russell TP, Liu Y. Angew Chem Int Ed, 2020, 59: 18131–18135

    Article  CAS  Google Scholar 

  31. Hu L, Zhao N, Jiang X, Jiang Y, Qin F, Sun L, Wang W, Zhou Y. J Mater Chem C, 2020, 8: 12218–12223

    Article  Google Scholar 

  32. Yu R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, Li S, Hou J. Nat Commun, 2018, 9: 4645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7: 1966–1973

    Article  CAS  Google Scholar 

  34. Koo D, Kim U, Cho Y, Lee J, Seo J, Choi Y, Choi KJ, Baik JM, Yang C, Park H. Chem Mater, 2021, 33: 5563–5571

    Article  CAS  Google Scholar 

  35. Min J, Zhang ZG, Hou Y, Ramirez Quiroz CO, Przybilla T, Bronnbauer C, Guo F, Forberich K, Azimi H, Ameri T, Spiecker E, Li Y, Brabec CJ. Chem Mater, 2014, 27: 227–234

    Article  CAS  Google Scholar 

  36. Suh YJ, Park SY, Lee TH, Chung WS, Kim KK, Kim MJ. Microsc Microanal, 2010, 16: 1378–1379

    Article  CAS  Google Scholar 

  37. Lee B, Jeong S, Cho Y, Jeong M, Lee SM, Oh J, Yang C. Adv Funct Mater, 2020, 30: 2005037

    Article  CAS  Google Scholar 

  38. Pan F, Bai S, Liu T, Tang D, Wei X, Chen X, Lv M, Li Y. Sci China Chem, 2021, 64: 565–575

    Article  CAS  Google Scholar 

  39. Zhang M, Bai Y, Sun C, Xue L, Wang H, Zhang ZG. Sci China Chem, 2021, 65: 462–485

    Article  CAS  Google Scholar 

  40. Yao J, Chen Q, Zhang C, Zhang Z, Li Y. SusMat, 2022, doi: https://doi.org/10.1002/sus2.50

    Google Scholar 

  41. Bin H, Wang J, Li J, Wienk MM, Janssen RAJ. Adv Mater, 2021, 33: 2008429

    Article  CAS  Google Scholar 

  42. Cai Y, Li Y, Wang R, Wu H, Chen Z, Zhang J, Ma Z, Hao X, Zhao Y, Zhang C, Huang F, Sun Y. Adv Mater, 2021, 33: 2101733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51903189, 51800334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Licheng Tan or Yiwang Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2022_1300_MOESM1_ESM.pdf

Achieving Improved Stability and Minimal Non-Radiative Recombination Loss for over 18% Binary Organic Photovoltaics via Versatile Interfacial Regulation Strategy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Mao, H., Huang, L. et al. Achieving improved stability and minimal non-radiative recombination loss for over 18% binary organic photovoltaics via versatile interfacial regulation strategy. Sci. China Chem. 65, 1623–1633 (2022). https://doi.org/10.1007/s11426-022-1300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1300-1

Keywords

Navigation