Skip to main content
Log in

N-doped nanocarbon embedded in hierarchically porous metal-organic frameworks for highly efficient CO2 fixation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

The rational integration of multi-functional components with metal-organic frameworks (MOFs) to form MOF-based catalysts can often afford enhanced catalytic activity for specific reactions. Herein, we propose a novel strategy for the synthesis of hierarchically porous MOFs (e.g., MIL-101)-encapsulated N-doped nanocarbon (CN@MIL) by controlled pyrolysis of ionic liquids@MIL-101 precursors (ILs@MIL). The obtained CN@MIL composites not only possess abundant enlarged mesopores, but also show multi-active sites without the sacrifice of their structure stability. The CN@MIL can efficiently facilitate the mass transfer of substrates, exhibiting excellent catalytic performance in the synthesis of cyclic carbonates from epoxides and CO2 under mild and co-catalyst-free conditions (i.e., 90 °C and ambient pressure of CO2). Furthermore, the multi-active Lewis acid sites and nucleophilic sites (Br ions) as well as the strong affinity of catalysts toward CO2 also contribute to the excellent catalytic activity of the CN@MIL. This study might open a new avenue for the rational design of MOF-based composites by employing ILs@MOF as precursors for advanced heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Wang W, Wang S, Ma X, Gong J. Chem Soc Rev, 2011, 40: 3703–3727

    Article  CAS  PubMed  Google Scholar 

  2. Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM. Nat Rev Mater, 2017, 2: 17045

    Article  CAS  Google Scholar 

  3. Lu XB, Darensbourg DJ. Chem Soc Rev, 2012, 41: 1462–1484

    Article  CAS  PubMed  Google Scholar 

  4. Li Z, Xing X, Meng D, Wang Z, Xue J, Wang R, Chu J, Li M, Yang Y. iScience, 2019, 15: 514–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Decortes A, Castilla AM, Kleij AW. Angew Chem Int Ed, 2010, 49: 9822–9837

    Article  CAS  Google Scholar 

  6. He H, Perman JA, Zhu G, Ma S. Small, 2016, 12: 6309–6324

    Article  CAS  PubMed  Google Scholar 

  7. Xu J, Ju Z, Zhang W, Pan Y, Zhu J, Mao J, Zheng X, Fu H, Yuan M, Chen H, Li R. Angew Chem Int Ed, 2021, 60: 8705–8709

    Article  CAS  Google Scholar 

  8. Chang GG, Ma XC, Zhang YX, Wang LY, Tian G, Liu JW, Wu J, Hu ZY, Yang XY, Chen B. Adv Mater, 2019, 31: 1904969

    Article  CAS  Google Scholar 

  9. Yang Q, Yang CC, Lin CH, Jiang HL. Angew Chem Int Ed, 2019, 58: 3511–3515

    Article  CAS  Google Scholar 

  10. Guo Y, Feng L, Wu C, Wang X, Zhang X. J Catal, 2020, 390: 213–223

    Article  CAS  Google Scholar 

  11. Tang F, Wang L, Ma L, Fang Y, Huang J, Liu YN. J CO2Util, 2021, 45: 101431

    Article  CAS  Google Scholar 

  12. Hendon CH, Rieth AJ, Korzyński MD, Dincă M. ACS Cent Sci, 2017, 3: 554–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Nature, 1999, 402: 276–279

    Article  CAS  Google Scholar 

  14. Hou CC, Xu Q. Adv Energy Mater, 2019, 9: 1801307

    Article  Google Scholar 

  15. Hong H, Liu J, Huang H, Etogo CA, Yang X, Guan B, Zhang L. J Am Chem Soc, 2019, 141: 14764–14771

    Article  CAS  PubMed  Google Scholar 

  16. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B. Science, 2018, 359: 206–210

    Article  CAS  PubMed  Google Scholar 

  17. Krishna R. Chem Soc Rev, 2012, 41: 3099–3118

    Article  CAS  PubMed  Google Scholar 

  18. Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S. Chem Soc Rev, 2014, 43: 5700–5734

    Article  CAS  PubMed  Google Scholar 

  19. Mintova S, Jaber M, Valtchev V. Chem Soc Rev, 2015, 44: 7207–7233

    Article  CAS  PubMed  Google Scholar 

  20. Dhakshinamoorthy A, Li Z, Garcia H. Chem Soc Rev, 2018, 47: 8134–8172

    Article  CAS  PubMed  Google Scholar 

  21. Meng F, Zhang S, Ma L, Zhang W, Li M, Wu T, Li H, Zhang T, Lu X, Huo F, Lu J. Adv Mater, 2018, 30: 1803263

    Article  Google Scholar 

  22. Jose T, Hwang Y, Kim DW, Kim MI, Park DW. Catal Today, 2015, 245: 61–67

    Article  CAS  Google Scholar 

  23. Liu S, Gao ML, Zhang Y, Liu L, Han ZB. Inorg Chem, 2021, 60: 6152–6156

    Article  CAS  PubMed  Google Scholar 

  24. Ding M, Jiang HL. ACS Catal, 2018, 8: 3194–3201

    Article  CAS  Google Scholar 

  25. Feng L, Yuan S, Zhang LL, Tan K, Li JL, Kirchon A, Liu LM, Zhang P, Han Y, Chabal YJ, Zhou HC. J Am Chem Soc, 2018, 140: 2363–2372

    Article  CAS  PubMed  Google Scholar 

  26. Parlett CMA, Wilson K, Lee AF. Chem Soc Rev, 2013, 42: 3876–3893

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Wei S, Wu Y, Wang YL, Zhang M, Roy D, Wang H, Yuan J, Zhao Q. ACS Nano, 2019, 13: 10261–10271

    Article  CAS  PubMed  Google Scholar 

  28. Gao J, Wang Y, Wu H, Liu X, Wang L, Yu Q, Li A, Wang H, Song C, Gao Z, Peng M, Zhang M, Ma N, Wang J, Zhou W, Wang G, Yin Z, Ma D. Angew Chem Int Ed, 2019, 58: 15089–15097

    Article  CAS  Google Scholar 

  29. Guo DC, Mi J, Hao GP, Dong W, Xiong G, Li WC, Lu AH. Energy Environ Sci, 2013, 6: 652–659

    Article  CAS  Google Scholar 

  30. Yang W, Fellinger TP, Antonietti M. J Am Chem Soc, 2011, 133: 206–209

    Article  CAS  PubMed  Google Scholar 

  31. Paraknowitsch JP, Zhang J, Su D, Thomas A, Antonietti M. Adv Mater, 2010, 22: 87–92

    Article  CAS  PubMed  Google Scholar 

  32. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. Science, 2005, 309: 2040–2042

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Wang J, Liu X, Liu L, Cha D, Zheng X, Yousef AA, Song K, Zhu Y, Zhang D, Han Y. J Am Chem Soc, 2019, 141: 12021–12028

    Article  CAS  PubMed  Google Scholar 

  34. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD. Nature, 1998, 396: 152–155

    Article  CAS  Google Scholar 

  35. Khan NA, Hasan Z, Jhung SH. Chem Commun, 2016, 52: 2561–2564

    Article  CAS  Google Scholar 

  36. Ban Y, Li Z, Li Y, Peng Y, Jin H, Jiao W, Guo A, Wang P, Yang Q, Zhong C, Yang W. Angew Chem Int Ed, 2015, 54: 15483–15487

    Article  CAS  Google Scholar 

  37. Verma YL, Gupta AK, Singh RK, Chandra S. Microporous Mesoporous Mater, 2014, 195: 143–153

    Article  CAS  Google Scholar 

  38. Zhou X, Chen L, Zhang W, Wang J, Liu Z, Zeng S, Xu R, Wu Y, Ye S, Feng Y, Cheng X, Peng Z, Li X, Yu Y. Nano Lett, 2019, 19: 4965–4973

    Article  CAS  PubMed  Google Scholar 

  39. Kang X, Sun X, Han B. Adv Mater, 2016, 28: 1011–1030

    Article  CAS  PubMed  Google Scholar 

  40. Banis MN, Yadegari H, Sun Q, Regier T, Boyko T, Zhou J, Yiu YM, Li R, Hu Y, Sham TK, Sun X. Energy Environ Sci, 2018, 11: 2073–2077

    Article  Google Scholar 

  41. Yadegari H, Banis MN, Xiao B, Sun Q, Li X, Lushington A, Wang B, Li R, Sham TK, Cui X, Sun X. Chem Mater, 2015, 27: 3040–3047

    Article  CAS  Google Scholar 

  42. Pan T, Shen Y, Wu P, Gu Z, Zheng B, Wu J, Li S, Fu Y, Zhang W, Huo F. Adv Funct Mater, 2020, 30: 2001389

    Article  CAS  Google Scholar 

  43. Ma D, Li B, Liu K, Zhang X, Zou W, Yang Y, Li G, Shi Z, Feng S. J Mater Chem A, 2015, 3: 23136–23142

    Article  CAS  Google Scholar 

  44. Liu N, Xie YF, Wang C, Li SJ, Wei D, Li M, Dai B. ACS Catal, 2018, 8: 9945–9957

    Article  CAS  Google Scholar 

  45. Hwang BJ, Park SW, Park DW, Oh KJ, Kim SS. Separation Sci Tech, 2009, 44: 1574–1589

    Article  CAS  Google Scholar 

  46. Leclerc H, Vimont A, Lavalley JC, Daturi M, Wiersum AD, Llwellyn PL, Horcajada P, Férey G, Serre C. Phys Chem Chem Phys, 2011, 13: 11748–11756

    Article  CAS  PubMed  Google Scholar 

  47. Xamena FXL, Zecchina A. Phys Chem Chem Phys, 2002, 4: 1978–1982

    Article  Google Scholar 

  48. Bonelli B, Civalleri B, Fubini B, Ugliengo P, Areán CO, Garrone E. J Phys Chem B, 2000, 104: 10978–10988

    Article  CAS  Google Scholar 

  49. Castro-Osma JA, Lamb KJ, North M. ACS Catal, 2016, 6: 5012–5025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21825802, 22138003), the Natural Science Foundation of Guangdong Province (2017A030312005), the Guangdong Natural Science Funds for Distinguished Young Scholar (2018B030306050), and the Science and Technology Program of Qingyuan City (2021YFJH01002). We thank beamline BL14W1 (Shanghai Synchrotron Radiation Facility) for providing the beam time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kui Shen or Yingwei Li.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Shen, K., Chen, L. et al. N-doped nanocarbon embedded in hierarchically porous metal-organic frameworks for highly efficient CO2 fixation. Sci. China Chem. 65, 1411–1419 (2022). https://doi.org/10.1007/s11426-022-1298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1298-9

Keywords

Navigation