Skip to main content
Log in

Assembly of versatile fluorine-containing structures via N-heterocyclic carbene organocatalysis

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Owing to the unique properties of fluorine-containing moieties in the pharmaceuticals, agrochemicals and materials, several synthetic efforts (i.e., enzymatic resolution, transition-metal catalysis, and organocatalysis) have been frequently made to fabricate these fluorinated structures. As powerful organic catalysts, N-heterocyclic carbenes can activate carbonyl group and realize the chiral intervention of multiple sites near the carbonyl group, and have an irreplaceable power to construct fluorine-containing fragments. However, NHC reviews focused on the versatile synthesis of fluorine-containing fragments are absolutely rare to this date. This mini-review highlights the invention of inserting fluorine atom or assembling fluorine-containing fragments via NHC organocatalysis. By summarizing the relative achievements in this field, we are eager to provide enlightening clues for further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gouverneur V. Fluorine in pharmaceutical and medicinal chemistry: From biophysical aspects to clinial applications. In: Gouverneur V, Muller K, Eds. Molecular Medicine and Medicinal Chemistry. London: World Scientific, 2012. 141–142

    Google Scholar 

  2. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev, 2014, 114: 2432–2506

    Article  CAS  PubMed  Google Scholar 

  3. Okazoe T. Proc Jpn Acad Ser B-Phys Biol Sci, 2009, 85: 276–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Böhm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M. ChemBioChem, 2004, 5: 637–643

    Article  PubMed  Google Scholar 

  5. Kirk KL. J Fluorine Chem, 2006, 127: 1013–1029

    Article  CAS  Google Scholar 

  6. Isanbor C, O’Hagan D. J Fluorine Chem, 2006, 127: 303–319

    Article  CAS  Google Scholar 

  7. Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886

    Article  PubMed  Google Scholar 

  8. Hagmann WK. J Med Chem, 2008, 51: 4359–4369

    Article  CAS  PubMed  Google Scholar 

  9. O’Hagan D. Chem Soc Rev, 2008, 37: 308–319

    Article  PubMed  Google Scholar 

  10. Yang X, Wu T, Phipps RJ, Toste FD. Chem Rev, 2015, 115: 826–870

    Article  CAS  PubMed  Google Scholar 

  11. Nenajdenko VG, Muzalevskiy VM, Shastin AV. Chem Rev, 2015, 115: 973–1050

    Article  CAS  PubMed  Google Scholar 

  12. Brunet VA, O’Hagan D. Angew Chem Int Ed, 2008, 47: 1179–1182

    Article  CAS  Google Scholar 

  13. Ma JA, Cahard D. Chem Rev, 2004, 104: 6119–6146

    Article  CAS  PubMed  Google Scholar 

  14. Ueda M, Kano T, Maruoka K. Org Biomol Chem, 2009, 7: 2005–2012

    Article  CAS  PubMed  Google Scholar 

  15. Lectard S, Hamashima Y, Sodeoka M. Adv Synth Catal, 2010, 352: 2708–2732

    Article  CAS  Google Scholar 

  16. Furuya T, Kamlet AS, Ritter T. Nature, 2011, 473: 470–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Valero G, Companyó X, Rios R. Chem Eur J, 2011, 17: 2018–2037

    Article  CAS  PubMed  Google Scholar 

  18. Hennecke U. Angew Chem Int Ed, 2012, 51: 4532–4534

    Article  CAS  Google Scholar 

  19. Enders D, Niemeier O, Henseler A. Chem Rev, 2007, 107: 5606–5655

    Article  CAS  PubMed  Google Scholar 

  20. Marion N, Díez-González S, Nolan SP. Angew Chem Int Ed, 2007, 46: 2988–3000

    Article  CAS  Google Scholar 

  21. Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem Soc Rev, 2011, 40: 5336–5346

    Article  CAS  PubMed  Google Scholar 

  22. Rong ZQ, Zhang W, Yang GQ, You SL. Curr Org Chem, 2011, 15: 3077–3090

    Article  CAS  Google Scholar 

  23. Biju AT, Kuhl N, Glorius F. Acc Chem Res, 2011, 44: 1182–1195

    Article  CAS  PubMed  Google Scholar 

  24. Douglas J, Churchill G, Smith A. Synthesis, 2012, 44: 2295–2309

    Article  CAS  Google Scholar 

  25. Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew Chem Int Ed, 2012, 51: 11686–11698

    Article  CAS  Google Scholar 

  26. Chen XY, Ye S. Synlett, 2013, 24: 1614–1622

    Article  CAS  Google Scholar 

  27. Ryan SJ, Candish L, Lupton DW. Chem Soc Rev, 2013, 42: 4906–4917

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar SD, Biswas A, Samanta RC, Studer A. Chem Eur J, 2013, 19: 4664–4678

    Article  PubMed  Google Scholar 

  29. Mahatthananchai J, Bode JW. Acc Chem Res, 2014, 47: 696–707

    Article  CAS  PubMed  Google Scholar 

  30. Hopkinson MN, Richter C, Schedler M, Glorius F. Nature, 2014, 510: 485–496

    Article  CAS  PubMed  Google Scholar 

  31. Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem Rev, 2015, 115: 9307–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang MH, Scheidt KA. Angew Chem Int Ed, 2016, 55: 14912–14922

    Article  CAS  Google Scholar 

  33. Li T, Jin Z, Chi YR. Sci China Chem, 2022, 65: 210–223

    Article  CAS  Google Scholar 

  34. Vora HU, Rovis T. J Am Chem Soc, 2010, 132: 2860–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wheeler P, Vora HU, Rovis T. Chem Sci, 2013, 4: 1674–1679

    Article  CAS  PubMed  Google Scholar 

  36. Zhang ZF, Zhang CL, Ye S. N-heterocyclic carbene-catalyzed reactions via azolium enolates and dienolates. In: Biju AT, Ed. N-Heterocyclic Carbenes in Organocatalysis. Weinheim: Wiley-VCH, 2018. 213–260

    Google Scholar 

  37. Zhang C, Hooper JF, Lupton DW. ACS Catal, 2017, 7: 2583–2596

    Article  CAS  Google Scholar 

  38. Biswas A, Neudörfl JM, Schlörer NE, Berkessel A. Angew Chem Int Ed, 2021, 60: 4507–4511

    Article  CAS  Google Scholar 

  39. Yatham VR, Neudörfl JM, Schlörer NE, Berkessel A. Chem Sci, 2015, 6: 3706–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao YM, Cheung MS, Lin Z, Sun J. Angew Chem Int Ed, 2012, 51: 10359–10363

    Article  CAS  Google Scholar 

  41. Engle KM, Mei TS, Wang X, Yu JQ. Angew Chem Int Ed, 2011, 50: 1478–1491

    Article  CAS  Google Scholar 

  42. Wang L, Jiang X, Chen J, Huang Y. Angew Chem Int Ed, 2019, 58: 7410–7414

    Article  CAS  Google Scholar 

  43. Jiang X, Li E, Chen J, Huang Y. Chem Commun, 2021, 57: 729–732

    Article  CAS  Google Scholar 

  44. Walker AG, Radda GK. Nature, 1967, 215: 1483

    Article  CAS  PubMed  Google Scholar 

  45. Singh K, Staig SJ, Weaver JD. J Am Chem Soc, 2014, 136: 5275–5278

    Article  CAS  PubMed  Google Scholar 

  46. Molloy JJ, Morack T, Gilmour R. Angew Chem Int Ed, 2019, 58: 13654–13664

    Article  CAS  Google Scholar 

  47. Metternich JB, Gilmour R. J Am Chem Soc, 2015, 137: 11254–11257

    Article  CAS  PubMed  Google Scholar 

  48. Molloy JJ, Metternich JB, Daniliuc CG, Watson AJB, Gilmour R. Angew Chem Int Ed, 2018, 57: 3168–3172

    Article  CAS  Google Scholar 

  49. Zhu C, Yue H, Maity B, Atodiresei I, Cavallo L, Rueping M. Nat Catal, 2019, 2: 678–687

    Article  CAS  Google Scholar 

  50. Poh SB, Ong JY, Lu S, Zhao Y. Angew Chem Int Ed, 2018, 57: 1645–1649

    Article  CAS  Google Scholar 

  51. Li F, Wu Z, Wang J. Angew Chem Int Ed, 2015, 54: 656–659

    CAS  Google Scholar 

  52. Dong X, Yang W, Hu W, Sun J. Angew Chem Int Ed, 2015, 54: 660–663

    CAS  Google Scholar 

  53. Wang X, Leow D, Yu JQ. J Am Chem Soc, 2011, 133: 13864–13867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ball ND, Gary JB, Ye Y, Sanford MS. J Am Chem Soc, 2011, 133: 7577–7584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosewall CF, Sibbald PA, Liskin DV, Michael FE. J Am Chem Soc, 2009, 131: 9488–9489

    Article  CAS  PubMed  Google Scholar 

  56. Sibbald PA, Rosewall CF, Swartz RD, Michael FE. J Am Chem Soc, 2009, 131: 15945–15951

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Wu Z, Wang J. Org Lett, 2016, 18: 576–579

    Article  CAS  PubMed  Google Scholar 

  58. Charpentier J, Früh N, Togni A. Chem Rev, 2015, 115: 650–682

    Article  CAS  PubMed  Google Scholar 

  59. Gelat F, Patra A, Pannecoucke X, Biju AT, Poisson T, Besset T. Org Lett, 2018, 20: 3897–3901

    Article  CAS  PubMed  Google Scholar 

  60. Chen J, Yuan P, Wang L, Huang Y. J Am Chem Soc, 2017, 139: 7045–7051

    Article  CAS  PubMed  Google Scholar 

  61. Yang W, Ma D, Zhou Y, Dong X, Lin Z, Sun J. Angew Chem Int Ed, 2018, 57: 12097–12101

    Article  CAS  Google Scholar 

  62. Ishii T, Nagao K, Ohmiya H. Chem Sci, 2020, 11: 5630–5636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ohmiya H. ACS Catal, 2020, 10: 6862–6869

    Article  CAS  Google Scholar 

  64. Dai L, Ye S. Chin Chem Lett, 2021, 32: 660–667

    Article  CAS  Google Scholar 

  65. Liu J, Xing XN, Huang JH, Lu LQ, Xiao WJ. Chem Sci, 2020, 11: 10605–10613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu Q, Chen XY. Org Chem Front, 2020, 7: 2082–2087

    Article  CAS  Google Scholar 

  67. Chen KQ, Sheng H, Liu Q, Shao PL, Chen XY. Sci China Chem, 2021, 64: 7–16

    Article  CAS  Google Scholar 

  68. Marzo L. Eur J Org Chem, 2021, 4603–4610

  69. Ishii T, Kakeno Y, Nagao K, Ohmiya H. J Am Chem Soc, 2019, 141: 3854–3858

    Article  CAS  PubMed  Google Scholar 

  70. Ishii T, Ota K, Nagao K, Ohmiya H. J Am Chem Soc, 2019, 141: 14073–14077

    Article  CAS  PubMed  Google Scholar 

  71. Dai L, Xia ZH, Gao YY, Gao ZH, Ye S. Angew Chem Int Ed, 2019, 58: 18124–18130

    Article  CAS  Google Scholar 

  72. White NA, Rovis T. J Am Chem Soc, 2015, 137: 10112–10115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang Y, Du Y, Huang Z, Xu J, Wu X, Wang Y, Wang M, Yang S, Webster RD, Chi YR. J Am Chem Soc, 2015, 137: 2416–2419

    Article  CAS  PubMed  Google Scholar 

  74. Li JL, Liu YQ, Zou WL, Zeng R, Zhang X, Liu Y, Han B, He Y, Leng HJ, Li QZ. Angew Chem Int Ed, 2020, 59: 1863–1870

    Article  CAS  Google Scholar 

  75. Zhang B, Peng Q, Guo D, Wang J. Org Lett, 2020, 22: 443–447

    Article  CAS  PubMed  Google Scholar 

  76. Meng QY, Döben N, Studer A. Angew Chem Int Ed, 2020, 59: 19956–19960

    Article  CAS  Google Scholar 

  77. Li Z, Huang M, Zhang X, Chen J, Huang Y. ACS Catal, 2021, 11: 10123–10130

    Article  CAS  Google Scholar 

  78. Chen L, Lin C, Zhang S, Zhang X, Zhang J, Xing L, Guo Y, Feng J, Gao J, Du D. ACS Catal, 2021, 11: 13363–13373

    Article  CAS  Google Scholar 

  79. Smith AD, Davies A, Slawin A M Z. Chem Eur J, 2015, 21: 18944–18948

    Article  PubMed  Google Scholar 

  80. Davies AT, Taylor JE, Douglas J, Collett CJ, Morrill LC, Fallan C, Slawin AMZ, Churchill G, Smith AD. J Org Chem, 2013, 78: 9243–9257

    Article  CAS  PubMed  Google Scholar 

  81. Davies AT, Pickett PM, Slawin AMZ, Smith AD. ACS Catal, 2014, 4: 2696–2700

    Article  CAS  Google Scholar 

  82. Lopez SS, Jaworski AA, Scheidt KA. J Org Chem, 2018, 83: 14637–14645

    Article  CAS  PubMed  Google Scholar 

  83. Shen LT, Shao PL, Ye S. Adv Synth Catal, 2011, 353: 1943–1948

    Article  CAS  Google Scholar 

  84. Mo J, Chen X, Chi YR. J Am Chem Soc, 2012, 134: 8810–8813

    Article  CAS  PubMed  Google Scholar 

  85. Liu Q, Chen XY, Li S, Jafari E, Raabe G, Enders D. Chem Commun, 2017, 53: 11342–11344

    Article  CAS  Google Scholar 

  86. Zhang ZZ, Zhang Y, Duan HX, Deng ZF, Wang YQ. Chem Commun, 2020, 56: 1553–1556

    Article  CAS  Google Scholar 

  87. Chen X, Yang S, Song BA, Chi YR. Angew Chem Int Ed, 2013, 52: 11134–11137

    Article  CAS  Google Scholar 

  88. Coyle JD. Chem Rev, 1978, 78: 97–123

    Article  CAS  Google Scholar 

  89. Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat Rev Chem, 2017, 1: 1–9

    Article  Google Scholar 

  91. Mavroskoufis A, Rajes K, Golz P, Agrawal A, Ruß V, Götze JP, Hopkinson MN. Angew Chem Int Ed, 2020, 59: 3190–3194

    Article  CAS  Google Scholar 

  92. Chen X, Wang H, Doitomi K, Ooi CY, Zheng P, Liu W, Guo H, Yang S, Song BA, Hirao H, Chi YR. Nat Commun, 2017, 8: 15598–155605

    Article  PubMed  PubMed Central  Google Scholar 

  93. Peng Q, Zhang B, Xie Y, Wang J. Org Lett, 2018, 20: 7641–7644

    Article  CAS  PubMed  Google Scholar 

  94. Lee A, Zhu JL, Feoktistova T, Brueckner AC, Cheong PHY, Scheidt KA. Angew Chem Int Ed, 2019, 58: 5941–5945

    Article  CAS  Google Scholar 

  95. Yang X, Luo G, Zhou L, Liu B, Zhang X, Gao H, Jin Z, Chi YR. ACS Catal, 2019, 9: 10971–10976

    Article  CAS  Google Scholar 

  96. Peng Q, Li SJ, Zhang B, Guo D, Lan Y, Wang J. Commun Chem, 2020, 3: 1–10

    Article  Google Scholar 

  97. Sun LH, Liang ZQ, Jia WQ, Ye S. Angew Chem Int Ed, 2013, 52: 5803–5806

    Article  CAS  Google Scholar 

  98. Dong X, Sun J. Org Lett, 2014, 16: 2450–2453

    Article  CAS  PubMed  Google Scholar 

  99. Dai L, Ye S. ACS Catal, 2019, 10: 994–998

    Article  Google Scholar 

  100. Gao YY, Zhang CL, Dai L, Han YF, Ye S. Org Lett, 2021, 23: 1361–1366

    Article  CAS  PubMed  Google Scholar 

  101. Wang Y, Qiao Y, Wei D, Tang M. Org Chem Front, 2017, 4: 1987–1998

    Article  CAS  Google Scholar 

  102. Zhang W, Wang Y, Wang L, Wang Z, Wei D, Tang M. Theor Chem Acc, 2017, 136: 94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871160, 21672121, 22071130) and the Bayer Investigator Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, J. Assembly of versatile fluorine-containing structures via N-heterocyclic carbene organocatalysis. Sci. China Chem. 65, 1691–1703 (2022). https://doi.org/10.1007/s11426-022-1291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1291-2

Keywords

Navigation