Skip to main content
Log in

Electrochemically time-dependent oxidative coupling/coupling-cyclization reaction between heterocycles: tunable synthesis of polycyclic indole derivatives with fluorescence properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A mild and practical protocol for selectively time-dependent dehydrogenative C-C coupling, as well as tandem coupling-cyclization reaction between indoles or/and other heteroaromatics via electrochemically oxidative process has been demonstrated. The reaction runs under noble catalyst, external oxidant and inert gas free condition, allowing tunable access to a wide variety of synthetically useful symmetrical or nonsymmetrical heteroarene with aggregation-induced emission (AIE), and polycyclic 3-D indole derivatives with aggregation-caused quenching (ACQ) fluorescence properties. Finally, preliminary mechanistic study indicated that tunable generation of indole cation under various electrolysis potential via regulating N-protecting group was the key to achieve cross-coupling between indoles and other heteroaromatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trost BM. Science, 1991, 254: 1471–1477

    Article  CAS  PubMed  Google Scholar 

  2. Anastas PT, Zimmerman JB. Green Chem, 2016, 18: 4324

    Article  CAS  Google Scholar 

  3. Matlin SA, Mehta G, Hopf H, Krief A. Nat Chem, 2016, 8: 393–398

    Article  CAS  PubMed  Google Scholar 

  4. Samanta RC, Meyer TH, Siewert I, Ackermann L. Chem Sci, 2020, 11: 8657–8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lund H, Hammerich O. Organic Electrochemistry. 4th ed. New York: Marcel Dekker, 2001

    Google Scholar 

  6. Schäfer HJ, Bard AJ, Stratmann M. Organic electrochemistry. Encyclopedia of Electrochemistry. Vol. 8. Weinheim: Wiley-VCH, 2004

    Google Scholar 

  7. Gütz C, Klöckner B, Waldvogel SR. Org Process Res Dev, 2016, 20: 26–32

    Article  Google Scholar 

  8. Gütz C, Stenglein A, Waldvogel SR. Org Process Res Dev, 2017, 21: 771–778

    Article  Google Scholar 

  9. Yan M, Kawamata Y, Baran PS. Angew Chem Int Ed, 2018, 57: 4149–4155

    Article  CAS  Google Scholar 

  10. Tian C, Meyer TH, Stangier M, Dhawa U, Rauch K, Finger LH, Ackermann L. Nat Protoc, 2020, 15: 1760–1774

    Article  CAS  PubMed  Google Scholar 

  11. Little RD, Moeller KD. Electrochem Soc Interface, 2002, 11: 3642

    Google Scholar 

  12. Lorion MM, Maindan K, Kapdi AR, Ackermann L. Chem Soc Rev, 2017, 46: 7399–7420

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Y, Xu K, Zeng C. Chem Rev, 2018, 118: 4485–4540

    Article  CAS  PubMed  Google Scholar 

  14. Tang S, Liu Y, Lei A. Chem, 2018, 4: 27–45

    Article  CAS  Google Scholar 

  15. Kärkäs MD. Chem Soc Rev, 2018, 47: 5786–5865

    Article  PubMed  Google Scholar 

  16. Chen N, Xu HC. Chem Rec, 2021, 21: 2306–2319

    Article  CAS  PubMed  Google Scholar 

  17. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Little RD. J Org Chem, 2020, 85: 13375–13390

    Article  CAS  PubMed  Google Scholar 

  19. Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. ACS Cent Sci, 2021, 7: 415–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao HB, Xu P, Song J, Xu HC. Angew Chem Int Ed, 2018, 57: 15153–15156

    Article  CAS  Google Scholar 

  21. Lv S, Han X, Wang JY, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Angew Chem Int Ed, 2020, 59: 11583–11590

    Article  CAS  Google Scholar 

  22. Wei BY, Xie DT, Lai SQ, Jiang Y, Fu H, Wei D, Han B. Angew Chem Int Ed, 2021, 60: 3182–3188

    Article  CAS  Google Scholar 

  23. Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. Angew Chem, 2021, 133: 27477–27482

    Article  Google Scholar 

  24. Dorababu A. RSC Med Chem, 2020, 11: 1335–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Humphrey GR, Kuethe JT. Chem Rev, 2006, 106: 2875–2911

    Article  CAS  PubMed  Google Scholar 

  26. Sundberg RJ, Russell HF, LigonJr. WV, Lin LS. J Org Chem, 1972, 37: 719–724

    Article  CAS  Google Scholar 

  27. Sundberg RJ. In:Comprehensive Heterocyclic Chemistry. Clive WB, Cheeseman GWH, eds. Oxford: Pergamon, 1984. 313–368

    Chapter  Google Scholar 

  28. Abou-Hamdan H, Kouklovsky C, Vincent G. Synlett, 2020, 31: 1775–1788

    Article  CAS  Google Scholar 

  29. Liu K, Tang S, Huang P, Lei A. Nat Commun, 2017, 8: 775

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu J, Abou-Hamdan H, Guillot R, Kouklovsky C, Vincent G. Chem Commun, 2020, 56: 1713–1716

    Article  CAS  Google Scholar 

  31. Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang CW, Lei A. Angew Chem Int Ed, 2020, 59: 7193–7197

    Article  CAS  Google Scholar 

  32. Liu K, Song W, Deng Y, Yang H, Song C, Abdelilah T, Wang S, Cong H, Tang S, Lei A. Nat Commun, 2020, 11: 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou N, Zhao J, Sun C, Lai Y, Ruan Z, Feng P. J Org Chem, 2021, 86: 16059–16067

    Article  CAS  PubMed  Google Scholar 

  34. Zhou N, Yu J, LiyuanHou J, Wu X, Ruan Z, Feng P. Adv Synth Catal, 2021, 364: 35–40

    Article  Google Scholar 

  35. Peng X, Zhao J, Ma G, Wu Y, Hu S, Ruan Z, Feng P. Green Chem, 2021, 23: 8853–8858

    Article  CAS  Google Scholar 

  36. Wirtanen T, Mäkelä MK, Sarfraz J, Ihalainen P, Hietala S, Melchionna M, Helaja J. Adv Synth Catal, 2015, 357: 3718–3726

    Article  CAS  Google Scholar 

  37. Bering L, Paulussen FM, Antonchick AP. Org Lett, 2018, 20: 1978–1981

    Article  CAS  PubMed  Google Scholar 

  38. Le J, Gao Y, Ding Y, Jiang C. Tetrahedron Lett, 2016, 57: 1728–1731

    Article  CAS  Google Scholar 

  39. Li T, Yang Y, Li B, Yang P. Chem Commun, 2019, 55: 353–356

    Article  CAS  Google Scholar 

  40. García-Rubia A, Gómez Arrayás R, Carretero JC. Angew Chem Int Ed, 2009, 48: 6511–6515

    Article  Google Scholar 

  41. Ramos-Villaseñor JM, Rodríguez-Cárdenas E, Barrera Díaz CE, Frontana-Uribe BA. J Electrochem Soc, 2020, 167: 155509

    Article  Google Scholar 

  42. Li Y, Wang WH, Yang SD, Li BJ, Feng C, Shi ZJ. Chem Commun, 2010, 46: 4553

    Article  CAS  Google Scholar 

  43. Noyori R. Chem Soc Rev, 1989, 18: 187–208

    Article  CAS  Google Scholar 

  44. Stuart DR, Fagnou K. Science, 2007, 316: 1172–1175

    Article  CAS  PubMed  Google Scholar 

  45. Alberico D, Scott ME, Lautens M. Chem Rev, 2007, 107: 174–238

    Article  CAS  PubMed  Google Scholar 

  46. McGlacken GP, Bateman LM. Chem Soc Rev, 2009, 38: 2447–2464

    Article  CAS  PubMed  Google Scholar 

  47. Dohi T, Ito M, Morimoto K, Iwata M, Kita Y. Angew Chem, 2008, 120: 1321–1324

    Article  Google Scholar 

  48. Kirste A, Schnakenburg G, Stecker F, Fischer A, Waldvogel SR. Angew Chem Int Ed, 2010, 49: 971–975

    Article  CAS  Google Scholar 

  49. Waldvogel SR, Mentizi S, Kirste A. Use of diamond films in organic electrosynthesis. In: Synthetic Diamond Films: Preparation, Electrochemistry, Characterization and Applications. Brillas E, Martí-nezHuitle C A, Eds. New York: Wiley, 2011. 483–510

    Chapter  Google Scholar 

  50. Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J Am Chem Soc, 2012, 134: 3571–3576

    Article  CAS  PubMed  Google Scholar 

  51. Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc Chem Res, 2019, 53: 45–61

    Article  PubMed  Google Scholar 

  52. Galloway WRJD, Isidro-Llobet A, Spring DR. Nat Commun, 2010, 1: 80

    Article  PubMed  Google Scholar 

  53. Xie W, Zuo Z, Zi W, Ma D. Chin J Org Chem, 2013, 33: 869–876

    Article  CAS  Google Scholar 

  54. For the cyclic voltammetry study, the coupling product (3a) shows a quasi-revisable waveform at low electro potential (0.5 V–0.8 V) and a second oxidation peak at high electro potential (1.21 V). The monomer 1a shows an oxidation peak at 0.86 V, thus the coupling product could stay stable in the reaction mixture until compete consumption of feedstock 1a

  55. Hong Y, Lam JWY, Tang BZ. Chem Commun, 2009, 29: 4332–4353

    Article  Google Scholar 

  56. The other free 3-phenyl indoles and N-protected 3-phenyl indoles indoles (N-Ac, N-CO2Et, N-Ts, N-Me, N-H) were also injected to cross coupling reaction, while only N-Acetyl indoles furnished the desired product. We speculated that both electron nature and steric hindrance of indoles determined the reaction outcome

  57. Yurko EO, Gryaznova TV, Kholin KV, Khrizanforova VV, Budnikova YH. Dalton Trans, 2018, 47: 190–196

    Article  CAS  Google Scholar 

  58. Eberson L, Persson O, Hartshorn MP. Angew Chem Int Ed Engl, 1995, 34: 2268–2269

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Basic and Applied Basic Research Foundation (2019A1515011743), the Pearl River talent program of Guangdong Province (Youth Top-Notch Talent, 2017GC010302), and Jinan University. We thank Dr. Xiaodan Chen for useful discussions and advice during preparation of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengju Feng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1289_MOESM1_ESM.pdf

Electrochemically time-dependent oxidative coupling/coupling-cyclization reaction between heterocycles: tunable synthesis of polycyclic indole derivatives with fluorescence properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Z., Zhang, Z., Yan, Q. et al. Electrochemically time-dependent oxidative coupling/coupling-cyclization reaction between heterocycles: tunable synthesis of polycyclic indole derivatives with fluorescence properties. Sci. China Chem. 65, 1962–1967 (2022). https://doi.org/10.1007/s11426-022-1289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1289-9

Keywords

Navigation