Skip to main content
Log in

Oxidative lactonization of C(sp3)-H bond in methyl aromatic alcohols enabled by proton-coupled electron transfer

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Direct functionalization of inert C(sp3)-H bonds in pharmaceutically significant compounds is very important in modern synthetic organic chemistry. In this article, we disclose a practical and efficient method for the oxidative lactonization of benzylic C(sp3)-H bonds enabled by the synergistic interactions of organic dye-type rose bengal, n-Bu4N·Br, O2 and Na2HPO4 under visible light irradiation. This reaction does not require transition metal catalysts or strong oxidants. A range of structurally diverse phthalides has been synthesized with excellent selectivity and high functional group compatibility. The late-stage application of this reaction to the preparation of structurally complex phthalides demonstrates its synthetic utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong MJ, Li ZH. Curr Org Chem, 2007, 11: 833–844

    Article  CAS  Google Scholar 

  2. Beck JJ, Chou SC. J Nat Prod, 2007, 70: 891–900

    Article  CAS  PubMed  Google Scholar 

  3. Shiina I. Chem Rev, 2007, 107: 239–273

    Article  CAS  PubMed  Google Scholar 

  4. Mal D, Pahari P. Chem Rev, 2007, 107: 1892–1918

    Article  CAS  PubMed  Google Scholar 

  5. Di Mola A, Palombi L, Massa A. Curr Org Chem, 2012, 16: 2302–2320

    Article  CAS  Google Scholar 

  6. Karmakar R, Pahari P, Mal D. Chem Rev, 2014, 114: 6213–6284

    Article  CAS  PubMed  Google Scholar 

  7. Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P, Pathom-aree W, Goodfellow M, Bull AT, Horikoshi K, Ebel R, Diederich M, Fiedler HP, Jaspars M. Org Biomol Chem, 2010, 8: 2352–2362

    Article  CAS  PubMed  Google Scholar 

  8. Costi MP, Gelain A, Barlocco D, Ghelli S, Soragni F, Reniero F, Rossi T, Ruberto A, Guillou C, Cavazzuti A, Casolari C, Ferrari S. J Med Chem, 2006, 49: 5958–5968

    Article  CAS  PubMed  Google Scholar 

  9. Ogino Y, Ohtake N, Nagae Y, Matsuda K, Ishikawa M, Moriya M, Kanesaka M, Mitobe Y, Ito J, Kanno T, Ishihara A, Iwaasa H, Ohe T, Kanatani A, Fukami T. Bioorg Med Chem Lett, 2008, 18: 4997–5001

    Article  CAS  PubMed  Google Scholar 

  10. Williams DJ, Thowas R. Tetrahedron Lett, 1973, 14: 639–640

    Article  Google Scholar 

  11. Deng S, Chen SN, Yao P, Nikolic D, van Breemen RB, Bolton JL, Fong HHS, Farnsworth NR, Pauli GF. J Nat Prod, 2006, 69: 536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asari F, Kusumi T, Zheng GZ, Cen YZ, Kakisawa H. Chem Lett, 1990, 19: 1885–1888

    Article  Google Scholar 

  13. Komala I, Ito T, Nagashima F, Yagi Y, Asakawa Y. Nat Prod Commun, 2011, 6: 303–309

    CAS  PubMed  Google Scholar 

  14. Tayone WC, Honma M, Kanamaru S, Noguchi S, Tanaka K, Nehira T, Hashimoto M. J Nat Prod, 2011, 74: 425–429

    Article  CAS  PubMed  Google Scholar 

  15. Novák P, Correa A, Gallardo-Donaire J, Martin R. Angew Chem Int Ed, 2011, 50: 12236–12239

    Article  CAS  Google Scholar 

  16. Mahendar L, Satyanarayana G. J Org Chem, 2016, 81: 7685–7691

    Article  CAS  PubMed  Google Scholar 

  17. Wdowik T, Chemler SR. J Am Chem Soc, 2017, 139: 9515–9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen TVQ, Rodríguez-Santamaría JA, Yoo WJ, Kobayashi S. Green Chem, 2017, 19: 2501–2505

    Article  CAS  Google Scholar 

  19. Song L, Zhu L, Zhang Z, Ye JH, Yan SS, Han JL, Yin ZB, Lan Y, Yu DG. Org Lett, 2018, 20: 3776–3779

    Article  CAS  PubMed  Google Scholar 

  20. Clar E, Stewart DG. J Chem Soc, 1951, 3215–3218

  21. Blicke FF, Weinkauff OJ. J Am Chem Soc, 1932, 54: 1446–1453

    Article  CAS  Google Scholar 

  22. For selected reviews, see: Crespi S, Fagnoni M. Chem Rev, 2020, 120: 9790–9833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Chem Rev, 2018, 118: 6516–6572

    Article  CAS  PubMed  Google Scholar 

  24. Crossley SWM, Obradors C, Martinez RM, Shenvi RA. Chem Rev, 2016, 116: 8912–9000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Studer A, Curran DP. Angew Chem Int Ed, 2016, 55: 58–102

    Article  CAS  Google Scholar 

  26. Zhu S, Zhao X, Li H, Chu L. Chem Soc Rev, 2021, 50: 10836–10856

    Article  CAS  PubMed  Google Scholar 

  27. For selected reviews, see: Chang L, An Q, Duan L, Feng K, Zuo Z. Chem Rev, 2022, 122: 2429–2486

    Article  CAS  PubMed  Google Scholar 

  28. Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Chem Rev, 2022, 122: 1485–1542

    Article  CAS  PubMed  Google Scholar 

  29. Reed NL, Yoon TP. Chem Soc Rev, 2021, 50: 2954–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou QQ, Zou YQ, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2019, 58: 1586–1604

    Article  CAS  Google Scholar 

  31. Buzzetti L, Crisenza GEM, Melchiorre P. Angew Chem Int Ed, 2019, 58: 3730–3747

    Article  CAS  Google Scholar 

  32. Marzo L, Pagire SK, Reiser O, König B. Angew Chem Int Ed, 2018, 57: 10034–10072

    Article  CAS  Google Scholar 

  33. Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal, 2017, 7: 2563–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    Article  CAS  PubMed  Google Scholar 

  36. For selected reviews, see: Katritzky AR, Nichols DA, Siskin M, Murugan R, Balasubramanian M. Chem Rev, 2001, 101: 837–892

    Article  CAS  PubMed  Google Scholar 

  37. For selected reviews, see: Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem Rev, 2022, 122: 3180–3218

    Article  CAS  PubMed  Google Scholar 

  38. Xiong P, Xu HC. Acc Chem Res, 2019, 52: 3339–3350

    Article  CAS  PubMed  Google Scholar 

  39. Tang S, Liu Y, Lei A. Chem, 2018, 4: 27–45

    Article  CAS  Google Scholar 

  40. Wang CC, Zhang GX, Zuo ZW, Zeng R, Zhai DD, Liu F, Shi ZJ. Sci China Chem, 2021, 64: 1487–1492

    Article  CAS  Google Scholar 

  41. Murugesan K, Donabauer K, König B. Angew Chem Int Ed, 2021, 60: 2439–2445

    Article  CAS  Google Scholar 

  42. Lee BJ, DeGlopper KS, Yoon TP. Angew Chem Int Ed, 2020, 59: 197–202

    Article  CAS  Google Scholar 

  43. Margrey KA, Czaplyski WL, Nicewicz DA, Alexanian EJ. J Am Chem Soc, 2018, 140: 4213–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nielsen MK, Shields BJ, Liu J, Williams MJ, Zacuto MJ, Doyle AG. Angew Chem Int Ed, 2017, 56: 7191–7194

    Article  CAS  Google Scholar 

  45. Deng HP, Fan XZ, Chen ZH, Xu QH, Wu J. J Am Chem Soc, 2017, 139: 13579–13584

    Article  CAS  PubMed  Google Scholar 

  46. Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F. J Am Chem Soc, 2016, 138: 16200–16203

    Article  CAS  PubMed  Google Scholar 

  47. Shields BJ, Doyle AG. J Am Chem Soc, 2016, 138: 12719–12722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cuthbertson JD, MacMillan DWC. Nature, 2015, 519: 74–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hager D, MacMillan DWC. Am Chem Soc, 2014, 136: 16986–16989

    Article  CAS  Google Scholar 

  50. For selected reviews, see: Miller DC, Tarantino KT, Knowles RR. Proton-coupled electron transfer in organic synthesis: fundamentals, applications, and opportunities. In: Guillena G., Ramón D, eds. Hydrogen Transfer Reactions. Topics in Current Chemistry. Heidelberg: Springer, 145–203

  51. Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Chem Rev, 2012, 112: 4016–4093

    Article  CAS  PubMed  Google Scholar 

  52. Warren JJ, Tronic TA, Mayer JM. Chem Rev, 2010, 110: 6961–7001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao K, Seidler G, Knowles RR. Angew Chem Int Ed, 2021, 60: 20190–20195

    Article  CAS  Google Scholar 

  54. Chen Y, Wang X, He X, An Q, Zuo Z. J Am Chem Soc, 2021, 143: 4896–4902

    Article  CAS  PubMed  Google Scholar 

  55. Tsui E, Metrano AJ, Tsuchiya Y, Knowles RR. Angew Chem Int Ed, 2020, 59: 11845–11849

    Article  CAS  Google Scholar 

  56. Cong F, Lv XY, Day CS, Martin R. J Am Chem Soc, 2020, 142: 20594–20599

    Article  CAS  PubMed  Google Scholar 

  57. Chen Y, Du J, Zuo Z. Chem, 2020, 6: 266–279

    Article  CAS  Google Scholar 

  58. Zhao K, Yamashita K, Carpenter JE, Sherwood TC, Ewing WR, Cheng PTW, Knowles RR. J Am Chem Soc, 2019, 141: 8752–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ota E, Wang H, Frye NL, Knowles RR. J Am Chem Soc, 2019, 141: 1457–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim I, Park B, Kang G, Kim J, Jung H, Lee H, Baik MH, Hong S. Angew Chem Int Ed, 2018, 57: 15517–15522

    Article  CAS  Google Scholar 

  61. Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew Chem Int Ed, 2016, 55: 1872–1875

    Article  CAS  Google Scholar 

  62. Zhao H, Fan X, Yu J, Zhu C. J Am Chem Soc, 2015, 137: 3490–3493

    Article  CAS  PubMed  Google Scholar 

  63. Barham JP, John MP, Murphy JA. J Am Chem Soc, 2016, 138: 15482–15487

    Article  CAS  PubMed  Google Scholar 

  64. Ouannes C, Wilson T. J Am Chem Soc, 1968, 90: 6527–6528

    Article  CAS  Google Scholar 

  65. Zhang P, Le C, MacMillan DWC. J Am Chem Soc, 2016, 138: 8084–8087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heitz DR, Tellis JC, Molander GA. J Am Chem Soc, 2016, 138: 12715–12718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jia P, Li Q, Poh WC, Jiang H, Liu H, Deng H, Wu J. Chem, 2020, 6: 1766–1776

    Article  CAS  Google Scholar 

  68. Chen DF, Chrisman CH, Miyake GM. ACS Catal, 2020, 10: 2609–2614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Das S, Murugesan K, Villegas Rodríguez GJ, Kaur J, Barham JP, Savateev A, Antonietti M, König B. ACS Catal, 2021, 11: 1593–1603

    Article  CAS  Google Scholar 

  70. Liu C, Liu H, Zheng X, Chen S, Lai Q, Zheng C, Huang M, Cai K, Cai Z, Cai S. ACS Catal, 2022, 12: 1375–1381

    Article  CAS  Google Scholar 

  71. Darmanyan AP, Jenks WS, Jardon P. J Phys Chem A, 1998, 102: 7420–7426

    Article  CAS  Google Scholar 

  72. Baciocchi E, Del Giacco T, Lapi A. Org Lett, 2004, 6: 4791–4794

    Article  CAS  PubMed  Google Scholar 

  73. Mandigma MJP, Žurauskas J, MacGregor CI, Edwards LJ, Shahin A, d’Heureuse L, Yip P, Birch DJS, Gruber T, Heilmann J, John MP, Barham JP. Chem Sci, 2022, 13: 1912–1924

    Article  CAS  PubMed  Google Scholar 

  74. Fudickar W, Linker T. Angew Chem Int Ed, 2018, 57: 12971–12975

    Article  CAS  Google Scholar 

  75. Schilling W, Riemer D, Zhang Y, Hatami N, Das S. ACS Catal, 2018, 8: 5425–5430

    Article  CAS  Google Scholar 

  76. Liu Y, Wang B, Qiao X, Tung CH, Wang Y. ACS Catal, 2017, 7: 4093–4099

    Article  CAS  Google Scholar 

  77. Ghogare AA, Greer A. Chem Rev, 2016, 116: 9994–10034

    Article  CAS  PubMed  Google Scholar 

  78. Celaje JA, Zhang D, Guerrero AM, Selke M. Org Lett, 2011, 13: 4846–4849

    Article  CAS  PubMed  Google Scholar 

  79. Frederiksen PK, Jørgensen M, Ogilby PR. J Am Chem Soc, 2001, 123: 1215–1221

    Article  CAS  PubMed  Google Scholar 

  80. Emery KJ, Young A, Arokianathar JN, Tuttle T, Murphy JA. Molecules, 2018, 23: 1055–1071

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21502086), the Natural Science Foundation of Fujian Province (2019J01744), the Key Project of Foundation of Fujian Province (2020J02044) and the Natural Science Foundation of Zhangzhou City (ZZ2021J13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunyou Cai.

Additional information

Conflict of interest

The authors declare no conflict of interest

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Lai, Q., Liu, C. et al. Oxidative lactonization of C(sp3)-H bond in methyl aromatic alcohols enabled by proton-coupled electron transfer. Sci. China Chem. 65, 1526–1531 (2022). https://doi.org/10.1007/s11426-022-1283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1283-7

Navigation