Skip to main content
Log in

[Cs6Cl][Ga5GeQ12] (Q = S, Se): two novel porous layered chalcohalides exhibiting two-band emission and ion exchange properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The salt-inclusion materials have drawn significant attention for their manifold structural chemistry and novel physical/chemical properties. Herein, two new salt-inclusion chalcohalides, [Cs6Cl][Ga5GeQ12] (Q = S, Se), have been discovered via high-temperature flux methods. The two isostructural compounds are constructed by porous [Ga5GeQ12]5− layers with [ClCs6]5+ octahedra filled in the holes. The [Ga5GeQ12]5− layer is composed of the honeycomb-like (Ga/Ge)18Q42 rings containing (Ga/Ge)3Q9 trimer as basic unit. The band gaps of the two compounds are 3.90 and 2.89 eV, respectively. [Cs6Cl][Ga5GeS12] exhibits interesting two-band emission properties which are related to the intermediate-band electronic structure revealed by density functional theory (DFT) calculations. Owing to the porous layered structure, [Cs6Cl][Ga5GeS12] exhibits topological ion exchange ability towards Cd2+ ions with the maximum sorption capacity of 250 mg/g and high distribution coefficient (Kd) near 106 mL/g. This work further enriches the structural diversity of salt-inclusion materials and extends their potential application range to ion exchange adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kageyama H, Hayashi K, Maeda K, Attfield JP, Hiroi Z, Rondinelli JM, Poeppelmeier KR. Nat Commun, 2018, 9: 772

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harada JK, Charles N, Poeppelmeier KR, Rondinelli JM. Adv Mater, 2019, 31: 1805295

    Article  Google Scholar 

  3. Singh SK, Kumar A, Gahtori B, Shruti B, Sharma G, Patnaik S, Awana VPS. J Am Chem Soc, 2012, 134: 16504–16507

    Article  CAS  PubMed  Google Scholar 

  4. Krzton-Maziopa A, Guguchia Z, Pomjakushina E, Pomjakushin V, Khasanov R, Luetkens H, Biswas PK, Amato A, Keller H, Conder K. J Phys-Condens Matter, 2014, 26: 215702

    Article  CAS  PubMed  Google Scholar 

  5. Ruan BB, Zhao K, Mu QG, Pan BJ, Liu T, Yang HX, Li JQ, Chen GF, Ren ZA. J Am Chem Soc, 2019, 141: 3404–3408

    Article  CAS  PubMed  Google Scholar 

  6. Sun YL, Ablimit A, Zhai HF, Bao JK, Tang ZT, Wang XB, Wang NL, Feng CM, Cao GH. Inorg Chem, 2014, 53: 11125–11129

    Article  CAS  PubMed  Google Scholar 

  7. Zhao LD, He J, Berardan D, Lin Y, Li JF, Nan CW, Dragoe N. Energy Environ Sci, 2014, 7: 2900–2924

    Article  CAS  Google Scholar 

  8. Luo M, Bu K, Zhang X, Huang J, Wang R, Huang F. Chem Commun, 2020, 56: 4356–4359

    Article  CAS  Google Scholar 

  9. Ueda K, Inoue S, Hirose S, Kawazoe H, Hosono H. Appl Phys Lett, 2000, 77: 2701–2703

    Article  CAS  Google Scholar 

  10. Zhang X, Liu Y, Zhang G, Wang Y, Zhang H, Huang F. ACS Appl Mater Interfaces, 2015, 7: 4442–4448

    Article  CAS  PubMed  Google Scholar 

  11. Wang R, Bu K, Zhang X, Gu Y, Xiao Y, Zhan Z, Huang F. J Mater Chem C, 2020, 8: 11018–11021

    Article  CAS  Google Scholar 

  12. Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S. Angew Chem, 2017, 129: 14307–14311

    Article  Google Scholar 

  13. Wang R, Liang F, Wang F, Guo Y, Zhang X, Xiao Y, Bu K, Lin Z, Yao J, Zhai T, Huang F. Angew Chem, 2019, 131: 8162–8165

    Article  Google Scholar 

  14. Liu BW, Jiang XM, Zeng HY, Guo GC. J Am Chem Soc, 2020, 142: 10641–10645

    Article  CAS  PubMed  Google Scholar 

  15. Pan Y, Guo SP, Liu BW, Xue HG, Guo GC. Coord Chem Rev, 2018, 374: 464–496

    Article  CAS  Google Scholar 

  16. Yue QG, Wei WB, Chen H, Wu XT, Lin H, Zhu QL. Dalton Trans, 2020, 49: 14338–14343

    Article  CAS  PubMed  Google Scholar 

  17. Gao L, Huang J, Guo S, Yang Z, Pan S. Coord Chem Rev, 2020, 421: 213379

    Article  CAS  Google Scholar 

  18. Chen X, Jing Q, Ok KM. Angew Chem Int Ed, 2020, 59: 20323–20327

    Article  CAS  Google Scholar 

  19. Ok KM. Chem Commun, 2019, 55: 12737–12748

    Article  CAS  Google Scholar 

  20. Liu BW, Zeng HY, Jiang XM, Guo GC. CCS Chem, 2021, 3: 964–973

    Article  CAS  Google Scholar 

  21. Morrison G, Smith MD, Zur Loye HC. J Am Chem Soc, 2016, 138: 7121–7129

    Article  CAS  PubMed  Google Scholar 

  22. Morrison G, Latshaw AM, Spagnuolo NR, Zur Loye HC. J Am Chem Soc, 2017, 139: 14743–14748

    Article  CAS  PubMed  Google Scholar 

  23. Yu P, Zhou LJ, Chen L. J Am Chem Soc, 2012, 134: 2227–2235

    Article  CAS  PubMed  Google Scholar 

  24. Li YY, Liu PF, Lin H, Wang MT, Chen L. Inorg Chem Front, 2016, 3: 952–958

    Article  CAS  Google Scholar 

  25. Yamauchi Y, Nagaura T, Ishikawa A, Chikyow T, Inoue S. J Am Chem Soc, 2008, 130: 10165–10170

    Article  CAS  PubMed  Google Scholar 

  26. Wu CW, Yamauchi Y, Ohsuna T, Kuroda K. J Mater Chem, 2006, 16: 3091–3098

    Article  CAS  Google Scholar 

  27. Nandi M, Mondal J, Sarkar K, Yamauchi Y, Bhaumik A. Chem Commun, 2011, 47: 6677–6679

    Article  CAS  Google Scholar 

  28. Malgras V, Henzie J, Takei T, Yamauchi Y. Angew Chem, 2018, 130: 9019–9023

    Article  Google Scholar 

  29. Jiang B, Guo Y, Kim J, Whitten AE, Wood K, Kani K, Rowan AE, Henzie J, Yamauchi Y. J Am Chem Soc, 2018, 140: 12434–12441

    Article  CAS  PubMed  Google Scholar 

  30. Manos MJ, Kanatzidis MG. Chem Sci, 2016, 7: 4804–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang Q, Ulutagay M, Michener PA, Hwu SJ. J Am Chem Soc, 1999, 121: 10323–10326

    Article  CAS  Google Scholar 

  32. Huang-Fu SX, Shen JN, Lin H, Chen L, Wu LM. Chem Eur J, 2015, 21: 9809–9815

    Article  CAS  PubMed  Google Scholar 

  33. Feng K, Yin W, Lin Z, Yao J, Wu Y. Inorg Chem, 2013, 52: 11503–11508

    Article  CAS  PubMed  Google Scholar 

  34. Gao H, Chen R, Zhang K, Abudurusuli A, Lai K, Li J. Dalton Trans, 2021, 50: 6315–6320

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Liang F, Liu T, Li H. Dalton Trans, 2021, 50: 11167–11172

    Article  CAS  PubMed  Google Scholar 

  36. Lin H, Chen H, Lin ZX, Zhao HJ, Liu PF, Yu JS, Chen L. Inorg Chem, 2016, 55: 1014–1016

    Article  CAS  PubMed  Google Scholar 

  37. Liu BW, Zeng HY, Jiang XM, Wang GE, Li SF, Xu L, Guo GC. Chem Sci, 2016, 7: 6273–6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu BW, Jiang XM, Li BX, Zeng HY, Guo GC. Angew Chem, 2020, 132: 4886–4889

    Article  Google Scholar 

  39. Pei SM, Liu BW, Jiang XM, Zou YQ, Chen WF, Yan QN, Guo GC. Chem Mater, 2021, 33: 8831–8837

    Article  CAS  Google Scholar 

  40. Sheldrick G. Program for crystal-structure refinement, SHELXL 97. Göttingen: University of Göttingen, 1997

    Google Scholar 

  41. Kortüm G, Braun W, Herzog G. Angew Chem Int Ed, 1963, 2: 333–341

    Article  Google Scholar 

  42. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  43. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  44. Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  45. Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  47. Wang R, Guo Y, Zhang X, Xiao Y, Yao J, Huang F. Inorg Chem, 2020, 59: 9944–9950

    Article  CAS  PubMed  Google Scholar 

  48. Brese NE, O’Keeffe M. Acta Crystlogr B Struct Sci, 1991, 47: 192–197

    Article  Google Scholar 

  49. Lin H, Li LH, Chen L. Inorg Chem, 2012, 51: 4588–4596

    Article  CAS  PubMed  Google Scholar 

  50. Li YY, Liu PF, Hu L, Chen L, Lin H, Zhou LJ, Wu LM. Adv Opt Mater, 2015, 3: 957–966

    Article  CAS  Google Scholar 

  51. Wang R, Zhang X, He J, Bu K, Zheng C, Lin J, Huang F. Inorg Chem, 2018, 57: 1449–1454

    Article  CAS  PubMed  Google Scholar 

  52. Yang C, Qin M, Wang Y, Wan D, Huang F, Lin J. Sci Rep, 2013, 3: 1286

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang X, He J, Chen W, Zhang K, Zheng C, Sun J, Liao F, Lin J, Huang F. Chem Eur J, 2014, 20: 5977–5982

    Article  CAS  PubMed  Google Scholar 

  54. Wang R, Chen H, Xiao Y, Hadar I, Bu K, Zhang X, Pan J, Gu Y, Guo Z, Huang F, Kanatzidis MG. J Am Chem Soc, 2019, 141: 16903–16914

    Article  CAS  PubMed  Google Scholar 

  55. Sarma D, Islam SM, Subrahmanyam KS, Kanatzidis MG. J Mater Chem A, 2016, 4: 16597–16605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22005006, 21871008, 22001263) and the China Postdoctoral Science Foundation (2019M660298, 2020T130009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian Zhang or Fuqiang Huang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhang, X. & Huang, F. [Cs6Cl][Ga5GeQ12] (Q = S, Se): two novel porous layered chalcohalides exhibiting two-band emission and ion exchange properties. Sci. China Chem. 65, 1903–1910 (2022). https://doi.org/10.1007/s11426-022-1277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1277-x

Keywords

Navigation