Skip to main content
Log in

Chiral rhodium(II)-catalyzed asymmetric aldol-type interception of an oxonium ylide to assemble chiral 2,3-dihydropyrans

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A chiral dirhodium complex is an effective and robust catalyst for asymmetric carbene transformations. However, dirhodium-catalyzed asymmetric ylide interception processes are rare, mainly because of the dissociation of the metal catalyst before the stereo-determining step. Herein, we report a chiral dirhodium(II)-catalyzed asymmetric annulation of vinyl diazoesters with α-hydroxyl ketones, which provides an efficient way to form chiral 2,3-dihydropyrans in good yields with excellent diastereos-electivities and enantioselectivities. This article is the first example of the chiral dirhodium complex—controlled asymmetric aldol-type interception of an in situ—formed oxonium ylide. The origin of the high stereoselectivity is well expounded via experimental and computational studies. These generated chiral products exhibit potent antiproliferation activity in three tested cancer cell lines, namely HCT116 (colon cancer), A549 (lung adenocarcinoma), and SJSA-1 (osteosarcoma cancer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi X, Lan Y. Acc Chem Res, 2021, 54: 2905–2915

    Article  CAS  PubMed  Google Scholar 

  2. Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem Soc Rev, 2020, 49: 908–950

    Article  CAS  PubMed  Google Scholar 

  3. Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem Rev, 2015, 115: 9981–10080

    Article  CAS  PubMed  Google Scholar 

  4. Davies HML, Denton JR. Chem Soc Rev, 2009, 38: 3061–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Padwa A. Chem Soc Rev, 2009, 38: 3072–3081

    Article  CAS  PubMed  Google Scholar 

  6. Kong L, Han X, Chen H, Sun H, Lan Y, Li X. ACS Catal, 2021, 11: 4929–4935

    Article  CAS  Google Scholar 

  7. Davies HML, Liao K. Nat Rev Chem, 2019, 3: 347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies HML, Morton D. ACS Cent Sci, 2017, 3: 936–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pons A, Delion L, Poisson T, Charette AB, Jubault P. Acc Chem Res, 2021, 54: 2969–2990

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Guptill DM, Varela-Alvarez A, Musaev DG, Davies HML. Chem Sci, 2013, 4: 2844–2850

    Article  CAS  PubMed  Google Scholar 

  11. Xia Y, Qiu D, Wang J. Chem Rev, 2017, 117: 13810–13889

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Wang J. Coord Chem Rev, 2010, 254: 941–953

    Article  CAS  Google Scholar 

  13. Nicolle SM, Lewis W, Hayes CJ, Moody CJ. Angew Chem Int Ed, 2015, 54: 8485–8489

    Article  CAS  Google Scholar 

  14. Zhu SF, Zhou QL. Acc Chem Res, 2012, 45: 1365–1377

    Article  CAS  PubMed  Google Scholar 

  15. Zhu S. Chin J Chem, 2021, 39: 3211–3218

    Article  CAS  Google Scholar 

  16. Suneja A, Loui HJ, Schneider C. Angew Chem Int Ed, 2020, 59: 5536–5540

    Article  CAS  Google Scholar 

  17. Zhang D, Hu W. Chem Rec, 2017, 17: 739–753

    Article  CAS  PubMed  Google Scholar 

  18. Zhou CY, Wang JC, Wei J, Xu ZJ, Guo Z, Low KH, Che CM. Angew Chem, 2012, 124: 11538–11542

    Article  Google Scholar 

  19. Liang XS, Li RD, Wang XC. Angew Chem Int Ed, 2019, 58: 13885–13889

    Article  CAS  Google Scholar 

  20. Cheng QQ, Deng Y, Lankelma M, Doyle MP. Chem Soc Rev, 2017, 46: 5425–5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu X, Doyle MP. Acc Chem Res, 2014, 47: 1396–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong K, Humeidi A, Griffith W, Arman H, Xu X, Doyle MP. Angew Chem Int Ed, 2021, 60: 13394–13400

    Article  CAS  Google Scholar 

  23. Marichev KO, Wang K, Dong K, Greco N, Massey LA, Deng Y, Arman H, Doyle MP. Angew Chem, 2019, 131: 16334–16338

    Article  Google Scholar 

  24. Deng Y, Massey LA, Zavalij PY, Doyle MP. Angew Chem Int Ed, 2017, 56: 7479–7483

    Article  CAS  Google Scholar 

  25. Zhang B, Davies HML. Angew Chem Int Ed, 2020, 59: 4937–4941

    Article  CAS  Google Scholar 

  26. Parr BT, Davies HML. Org Lett, 2015, 17: 794–797

    Article  CAS  PubMed  Google Scholar 

  27. Parr BT, Davies HML. Nat Commun, 2014, 5: 4455

    Article  CAS  PubMed  Google Scholar 

  28. Qin C, Davies HML. J Am Chem Soc, 2013, 135: 14516–14519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parr BT, Li Z, Davies HML. Chem Sci, 2011, 2: 2378–2382

    Article  CAS  PubMed  Google Scholar 

  30. Yuan T, Ryckaert B, Van Hecke K, Hullaert J, Winne JM. Angew Chem Int Ed, 2021, 60: 4070–4074

    Article  CAS  Google Scholar 

  31. Armengol-Relats H, Mato M, Echavarren AM. Angew Chem Int Ed, 2021, 60: 1916–1922

    Article  CAS  Google Scholar 

  32. Wu R, Chen K, Ma J, Yu ZX, Zhu S. Sci China Chem, 2020, 63: 1230–1239

    Article  CAS  Google Scholar 

  33. Bao M, Chen J, Pei C, Zhang S, Lei J, Hu W, Xu X. Sci China Chem, 2020, 64: 778–787

    Article  CAS  Google Scholar 

  34. Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Angew Chem Int Ed, 2021, 60: 1992–1999

    Article  CAS  Google Scholar 

  35. Reddy AGK, Niharika P, Zhou S, Jia SK, Shi T, Xu X, Qian Y, Hu W. Org Lett, 2020, 22: 2925–2930

    Article  CAS  Google Scholar 

  36. Zhang D, Wang X, Zhang M, Kang Z, Xiao G, Xu X, Hu W. CCS Chem, 2020, 2: 432–439

    Article  CAS  Google Scholar 

  37. Liu YC, Xiao S, Yang K, Ling L, Sun ZL, Liu ZY. J Mass Spectrom, 2017, 52: 378–396

    Article  CAS  PubMed  Google Scholar 

  38. Fu L, Huang X, Lai Z, Hu Y, Liu H, Cai X. Molecules, 2008, 13: 1923–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krohn K, Dai J, Flörke U, Aust HJ, Dräger S, Schulz B. J Nat Prod, 2005, 68: 400–405

    Article  CAS  PubMed  Google Scholar 

  40. Timonen J, Vuolteenaho K, Leppänen T, Nieminen R, Moilanen E, Aulaskari P, Jänis J. J Heterocyclic Chem, 2015, 52: 1286–1295

    Article  CAS  Google Scholar 

  41. Brito I, Dias T, Díaz-Marrero AR, Darias J, Cueto M. Tetrahedron, 2006, 62: 9655–9660

    Article  CAS  Google Scholar 

  42. Zhu DX, Xia H, Liu JG, Chung LW, Xu MH. J Am Chem Soc, 2021, 143: 2608–2619

    Article  CAS  PubMed  Google Scholar 

  43. Liao K, Pickel TC, Boyarskikh V, Bacsa J, Musaev DG, Davies HML. Nature, 2017, 551: 609–613

    Article  CAS  PubMed  Google Scholar 

  44. Tsutsui H, Abe T, Nakamura S, Anada M, Hashimoto S. Chem Pharm Bull, 2005, 53: 1366–1368

    Article  CAS  Google Scholar 

  45. CCDC 2060733 and 2069232 contain the supplementary crystallographic data for 4j and 4s, respectively. These data can be obtained free of charge from the Cambridge crystallographic data centre viawww.ccdc.cam.ac.uk/data_request/cif

  46. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. Chem Rev, 2015, 115: 5678–5796

    Article  CAS  PubMed  Google Scholar 

  47. Menikarachchi LC, Gascón JA. Curr Top Med Chem, 2010, 10: 46–54

    Article  CAS  PubMed  Google Scholar 

  48. Senn HM, Thiel W. Angew Chem Int Ed, 2009, 48: 1198–1229

    Article  CAS  Google Scholar 

  49. Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery Jr. JA, Morokuma K, Frisch MJ. J Chem Theor Comput, 2006, 2: 815–826

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001268, 21973113, 81973176), the Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery (2019B030301005), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2016ZT06Y337) and the Guangdong Natural Science Fund (2020A1515010614), Key-Area Research and Development Program of Guangdong Province (2022B1111050003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuofeng Ke, Yu Qian or Wenhao Hu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1275_MOESM1_ESM.pdf

Chiral rhodium(II)-catalyzed asymmetric aldol-type interception of an oxonium ylide to assemble chiral 2,3-dihydropyrans

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, A., Zhou, X., Zheng, R. et al. Chiral rhodium(II)-catalyzed asymmetric aldol-type interception of an oxonium ylide to assemble chiral 2,3-dihydropyrans. Sci. China Chem. 65, 1607–1614 (2022). https://doi.org/10.1007/s11426-022-1275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1275-9

Keywords

Navigation