Skip to main content
Log in

“Living” fluorophores: Thermo-driven reversible ACQ-AIE transformation and ultra-sensitive in-situ monitor for dynamic Diels-Alder reactions

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic fluorophores play essential roles in both academic and applied fields. Most of the fluorescent molecules can be divided into aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) types based on the diverse emission properties in solution and aggregated states. Currently, a large part of studies focuses on the ACQ-to-AIE one-way transformation and the complex synthesis of chemical bonds is inevitable in all existing methods. To maximize the advantages of ACQ and AIE types fluorophores and avoid complex chemosynthesis, we propose a facile strategy first realizing the reversible ACQ-AIE transformation with the dynamic Diels-Alder (DA) reactions. Besides, the fluorescent platform can monitor DA reactions in microscale ultra-sensitively and quantitively. The dynamic covalent bonds can help to develop novel fluorophores creatively, and the reversible ACQ-AIE platform is expected to offer fresh insights into the dynamic covalent chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lakowicz JR. Introduction to fluorescence. In: Principles of Fluorescence Spectroscopy. 3rd Ed. Boston: Springer, 2006: 1–26

    Chapter  Google Scholar 

  2. Chen RF, Knutson JR. Anal Biochem, 1988, 172: 61–77

    Article  CAS  Google Scholar 

  3. Luo JD, Xie ZL, Lam JWY, Cheng L, Chen HY, Qiu CF, Kwok HS, Zhan XW, Liu YQ, Zhu DB, Tang BZ. Chem Commun, 2001, 1740–1741

  4. Grimm JB, Lavis LD. Nat Methods, 2022, 19: 149–158

    Article  CAS  Google Scholar 

  5. Ye S, Tian T, Christofferson AJ, Erikson S, Jagielski J, Luo Z, Kumar S, Shih CJ, Leroux JC, Bao Y. Sci Adv, 2021, 7: eabd1794

    Article  CAS  Google Scholar 

  6. Cao S, Shao J, Abdelmohsen LKEA, van Hest JCM. Aggregate, 2022, 3: e128

    Article  Google Scholar 

  7. Yang J, Chi Z, Zhu W, Tang BZ, Li Z. Sci China Chem, 2019, 62: 1090–1098

    Article  CAS  Google Scholar 

  8. Ji J, Hu D, Yuan J, Wei Y. Adv Mater, 2020, 32: 2004616

    Article  CAS  Google Scholar 

  9. Zhang D, Fan Y, Chen H, Trépout S, Li MH. Angew Chem Int Ed, 2019, 58: 10260–10265

    Article  CAS  Google Scholar 

  10. Jia YG, Chen KF, Gao M, Liu S, Wang J, Chen X, Wang L, Chen Y, Song W, Zhang H, Ren L, Zhu XX, Tang BZ. Sci China Chem, 2021, 64: 403–407

    Article  CAS  Google Scholar 

  11. Ortiz-Gómez I, González-Alfaro S, Sánchez-Ruiz A, de Orbe-Payá I, Capitán-Vallvey LF, Navarro A, Salinas-Castillo A, García-Martínez JC. ACS Sens, 2022, 7: 37–43

    Article  Google Scholar 

  12. Wang H, Xing H, Gong J, Zhang H, Zhang J, Wei P, Yang G, Lam JWY, Lu R, Tang BZ. Mater Horiz, 2020, 7: 1566–1572

    Article  CAS  Google Scholar 

  13. Li Y, Liu S, Ni H, Zhang H, Zhang H, Chuah C, Ma C, Wong KS, Lam JWY, Kwok RTK, Qian J, Lu X, Tang BZ. Angew Chem Int Ed, 2020, 59: 12822–12826

    Article  CAS  Google Scholar 

  14. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  Google Scholar 

  15. Zheng N, Xu Y, Zhao Q, Xie T. Chem Rev, 2021, 121: 1716–1745

    Article  CAS  Google Scholar 

  16. Van Damme J, Du Prez F. Prog Polym Sci, 2018, 82: 92–119

    Article  CAS  Google Scholar 

  17. Atherton JCC, Jones S. Tetrahedron, 2003, 59: 9039–9057

    Article  CAS  Google Scholar 

  18. Chen M, Yan L, Zhao Y, Murtaza I, Meng H, Huang W. J Mater Chem C, 2018, 6: 7416–7444

    Article  CAS  Google Scholar 

  19. Li F, Li X, Wang Y, Zhang X. Angew Chem Int Ed, 2019, 58: 17994–18002

    Article  CAS  Google Scholar 

  20. Hu D, Mao L, Wang M, Huang H, Hu R, Ma H, Yuan J, Wei Y. ACS Appl Mater Interfaces, 2022, 14: 3485–3495

    Article  CAS  Google Scholar 

  21. Guy J, Caron K, Dufresne S, Michnick SW, Skene WG, Keillor JW. J Am Chem Soc, 2007, 129: 11969–11977

    Article  CAS  Google Scholar 

  22. Jones JR, Liotta CL, Collard DM, Schiraldi DA. Macromolecules, 1999, 32: 5786–5792

    Article  CAS  Google Scholar 

  23. Sung J, Robb MJ, White SR, Moore JS, Sottos NR. J Am Chem Soc, 2018, 140: 5000–5003

    Article  CAS  Google Scholar 

  24. Wang X, Cao Y, Peng Y, Wang L, Hou W, Zhou Y, Shi Y, Huang H, Chen Y, Li Y. ACS Macro Lett, 2022, 11: 310–316

    Article  CAS  Google Scholar 

  25. Ji J, Yuan J, Wei Y. Chem Commun, 2022, 58: 1601–1604

    Article  CAS  Google Scholar 

  26. He F, Tang Y, Yu M, Wang S, Li Y, Zhu D. Adv Funct Mater, 2007, 17: 996–1002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mao LC, Wang MS, Hu RJ, Zheng MX, and An NK for stimulating discussions, Zhang Y for language polishing, and Liu ZL for figure preparation. This work was supported by the National Natural Science Foundation of China (21788102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinying Yuan or Yen Wei.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1274_MOESM1_ESM.pdf

“Living” Fluorophores: Thermo-driven Reversible ACQ-AIE Transformation and Ultra-sensitive In-Situ Monitor for Dynamic Diels-Alder Reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Huang, H., Li, R. et al. “Living” fluorophores: Thermo-driven reversible ACQ-AIE transformation and ultra-sensitive in-situ monitor for dynamic Diels-Alder reactions. Sci. China Chem. 65, 1532–1537 (2022). https://doi.org/10.1007/s11426-022-1274-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1274-y

Navigation