Skip to main content
Log in

Covalent organic frameworks catalyzed by organic Lewis acid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

We report the synthesis of covalent organic framework (COF) crystals with organic Lewis acid instead of the conventional use of Brønsted acid or inorganic Lewis acid. Specifically, tris(pentafluorophenyl)borane was applied for the growth of seven imine COFs: TAPB-PDA-, TAPB-2,5-DMTA-, TAPB-2,3-DMTA-, TAPT-PDA-, TAPT-2,5-DMTA-, TAPT-2,3-DMTA-COF with hcb topology and varied in functional groups, as well as a new one, COF-820, with sql topology. All these COFs were obtained at room temperature. Their high crystallinity and porosity demonstrate the versatility of the organic Lewis acid as a catalyst. Bulky organic Lewis acid was found critical for the production of COF-820, while its absence resulted in the formation of a different COF, 4PE-1P-COF, with kgm topology using the same building blocks. Such steric effect, typical for organic catalysts, provides a new way to regulate the topology of COFs and their future design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Diercks CS, Yaghi OM. Science, 2017, 355: eaal1585

    Article  Google Scholar 

  2. Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568

    Article  CAS  Google Scholar 

  3. Guan X, Chen F, Fang Q, Qiu S. Chem Soc Rev, 2020, 49: 1357–1384

    Article  CAS  Google Scholar 

  4. Sun T, Wei L, Chen Y, Ma Y, Zhang YB. J Am Chem Soc, 2019, 141: 10962–10966

    Article  CAS  Google Scholar 

  5. Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale Adv, 2020, 2: 3656–3733

    Article  CAS  Google Scholar 

  6. Jiang J, Zhao Y, Yaghi OM. J Am Chem Soc, 2016, 138: 3255–3265

    Article  CAS  Google Scholar 

  7. Kandambeth S, Dey K, Banerjee R. J Am Chem Soc, 2019, 141: 1807–1822

    Article  CAS  Google Scholar 

  8. Matsumoto M, Dasari RR, Ji W, Feriante CH, Parker TC, Marder SR, Dichtel WR. J Am Chem Soc, 2017, 139: 4999–5002

    Article  CAS  Google Scholar 

  9. Liu Y, Zhu Y, Alahakoon SB, Egap E. ACS Mater Lett, 2020, 2: 1561–1566

    Article  CAS  Google Scholar 

  10. Giuseppone N, Schmitt JL, Schwartz E, Lehn JM. J Am Chem Soc, 2005, 127: 5528–5539

    Article  CAS  Google Scholar 

  11. Satchell DPN, Satchell RS. Q Rev Chem Soc, 1971, 25: 171–199

    Article  CAS  Google Scholar 

  12. Ashley AE, Herrington TJ, Wildgoose GG, Zaher H, Thompson AL, Rees NH, Krämer T, O’Hare D. J Am Chem Soc, 2011, 133: 14727–14740

    Article  CAS  Google Scholar 

  13. Beckett MA, Strickland GC, Holland JR, Sukumar Varma K. Polymer, 1996, 37: 4629–4631

    Article  CAS  Google Scholar 

  14. Braunschweig H, Krummenacher I, Légaré MA, Matler A, Radacki K, Ye Q. J Am Chem Soc, 2017, 139: 1802–1805

    Article  CAS  Google Scholar 

  15. Légaré MA, Pranckevicius C, Braunschweig H. Chem Rev, 2019, 119: 8231–8261

    Article  Google Scholar 

  16. Welch GC, San Juan RR, Masuda JD, Stephan DW. Science, 2006, 314: 1124–1126

    Article  CAS  Google Scholar 

  17. Welch GC, Stephan DW. J Am Chem Soc, 2007, 129: 1880–1881

    Article  CAS  Google Scholar 

  18. Stephan DW. J Am Chem Soc, 2015, 137: 10018–10032

    Article  CAS  Google Scholar 

  19. Zhou TY, Xu SQ, Wen Q, Pang ZF, Zhao X. J Am Chem Soc, 2014, 136: 15885–15888

    Article  CAS  Google Scholar 

  20. Ascherl L, Sick T, Margraf JT, Lapidus SH, Calik M, Hettstedt C, Karaghiosoff K, Döblinger M, Clark T, Chapman KW, Auras F, Bein T. Nat Chem, 2016, 8: 310–316

    Article  CAS  Google Scholar 

  21. Smith BJ, Overholts AC, Hwang N, Dichtel WR. Chem Commun, 2016, 52: 3690–3693

    Article  CAS  Google Scholar 

  22. Gomes R, Bhanja P, Bhaumik A. Chem Commun, 2015, 51: 10050–10053

    Article  CAS  Google Scholar 

  23. Wang K, Kang X, Yuan C, Han X, Liu Y, Cui Y. Angew Chem Intl Ed, 2021, 60: 19466–19476

    Article  CAS  Google Scholar 

  24. Wang X, Han X, Cheng C, Kang X, Liu Y, Cui Y. J Am Chem Soc, 2022, 144: 7366–7373

    Article  CAS  Google Scholar 

  25. Pang ZF, Zhou TY, Liang RR, Qi QY, Zhao X. Chem Sci, 2017, 8: 3866–3870

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22025106, 21971199), the National Key Research and Development Project (2018YFA0704000) and the Innovation Team of Wuhan University (2042017kf0232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hexiang Deng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Yi, L. & Deng, H. Covalent organic frameworks catalyzed by organic Lewis acid. Sci. China Chem. 65, 1315–1320 (2022). https://doi.org/10.1007/s11426-022-1272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1272-5

Navigation