Skip to main content
Log in

In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal nanoclusters are promising nanomaterials with unique properties, but only a few ones with specific numbers of metal atoms can be obtained and studied up to now. In this study, we establish a new paradigm of in-situ generation and global study of metal nanoclusters with different sizes, constitutions, and charge states, including both accurate constitution characterization and global activity profiling. The complex mixtures of metal nanoclusters are produced by employing single-pulsed 193-nm laser dissociation of monolayer-protected cluster (MPC) precursors within a high-resolution mass spectrometry (HRMS). More than 400 types of bare gold nanoclusters including novel multiply charged (2+ and 3+), S-/P-doped, and silver alloy ones can be efficiently generated and accurately characterized. A distinct size (1 to 142 atoms)- and charge (1+ to 3+)-hierarchy reactivity is clearly observed for the first time. This global cluster study might greatly promote the developments and applications of novel metal nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakraborty I, Pradeep T. Chem Rev, 2017, 117: 8208–8271

    Article  CAS  PubMed  Google Scholar 

  2. Parent DC, Anderson SL. Chem Rev, 1992, 92: 1541–1565

    Article  CAS  Google Scholar 

  3. Wilcoxon JP, Abrams BL. Chem Soc Rev, 2006, 35: 1162–1194

    Article  CAS  PubMed  Google Scholar 

  4. Parker JF, Fields-Zinna CA, Murray RW. Acc Chem Res, 2010, 43: 1289–1296

    Article  CAS  PubMed  Google Scholar 

  5. Li G, Jin R. Acc Chem Res, 2013, 46: 1749–1758

    Article  CAS  PubMed  Google Scholar 

  6. Jia Y, Luo Z. Coord Chem Rev, 2019, 400: 213053

    Article  CAS  Google Scholar 

  7. Kang X, Zhu M. Chem Soc Rev, 2019, 48: 2422–2457

    Article  CAS  PubMed  Google Scholar 

  8. Luo Z, Castleman Jr. AW, Khanna SN. Chem Rev, 2016, 116: 14456–14492

    Article  CAS  PubMed  Google Scholar 

  9. Yao Q, Feng Y, Fung V, Yu Y, Jiang DE, Yang J, Xie J. Nat Commun, 2017, 8: 1555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Irion MP, Selinger A, Schnabel P. Z Phys D Atoms Molecules Clusters, 1991, 19: 393–396

    Article  CAS  Google Scholar 

  11. Dietz TG, Duncan MA, Powers DE, Smalley RE. J Chem Phys, 1981, 74: 6511–6512

    Article  CAS  Google Scholar 

  12. Bondybey VE, English JH. J Chem Phys, 1981, 74: 6978–6979

    Article  CAS  Google Scholar 

  13. Duncan MA. Rev Sci Instruments, 2012, 83: 041101

    Article  CAS  Google Scholar 

  14. Haberland H, Mall M, Moseler M, Qiang Y, Reiners T, Thurner Y. J Vacuum Sci Tech A-Vacuum Surfs Films, 1994, 12: 2925–2930

    Article  CAS  Google Scholar 

  15. Grammatikopoulos P, Steinhauer S, Vernieres J, Singh V, Sowwan M. Adv Phys-X, 2016, 1: 81–100

    CAS  Google Scholar 

  16. Vezmar I, Alvarez MM, Khoury JT, Salisbury BE, Shafigullin MN, Whetten RL. Z für Physik D Atoms Molecules Clusters, 1997, 40: 147–151

    Article  CAS  Google Scholar 

  17. Arnold RJ, Reilly JP. J Am Chem Soc, 1998, 120: 1528–1532

    Article  CAS  Google Scholar 

  18. Black DM, Crittenden CM, Brodbelt JS, Whetten RL. J Phys Chem Lett, 2017, 8: 1283–1289

    Article  CAS  PubMed  Google Scholar 

  19. Higaki T, Li Q, Zhou M, Zhao S, Li Y, Li S, Jin R. Acc Chem Res, 2018, 51: 2764–2773

    Article  CAS  PubMed  Google Scholar 

  20. Qian H, Jin R. Chem Mater, 2011, 23: 2209–2217

    Article  CAS  Google Scholar 

  21. Lin J, Li W, Liu C, Huang P, Zhu M, Ge Q, Li G. Nanoscale, 2015, 7: 13663–13670

    Article  CAS  PubMed  Google Scholar 

  22. Zheng K, Zhang J, Zhao D, Yang Y, Li Z, Li G. Nano Res, 2019, 12: 501–507

    Article  CAS  Google Scholar 

  23. Loos M, Gerber C, Corona F, Hollender J, Singer H. Anal Chem, 2015, 87: 5738–5744

    Article  CAS  PubMed  Google Scholar 

  24. Liu C, Abroshan H, Yan C, Li G, Haruta M. ACS Catal, 2015, 6: 92–99

    Article  CAS  Google Scholar 

  25. Chen Y, Liu C, Abroshan H, Li Z, Wang J, Li G, Haruta M. J Catal, 2016, 340: 287–294

    Article  CAS  Google Scholar 

  26. Katakuse I, Ichihara T, Fujita Y, Matsuo T, Sakurai T, Matsuda H. Int J Mass Spectrometry Ion Processes, 1985, 67: 229–236

    Article  CAS  Google Scholar 

  27. Luo Z, Reber AC, Jia M, Blades WH, Khanna SN, Castleman AW. Chem Sci, 2016, 7: 3067–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen S, Xiong L, Wang S, Ma Z, Jin S, Sheng H, Pei Y, Zhu M. J Am Chem Soc, 2016, 138: 10754–10757

    Article  CAS  PubMed  Google Scholar 

  29. de Heer WA. Rev Mod Phys, 1993, 65: 611–676

    Article  CAS  Google Scholar 

  30. Ferrando R, Jellinek J, Johnston RL. Chem Rev, 2008, 108: 845–910

    Article  CAS  PubMed  Google Scholar 

  31. Taketoshi A, Haruta M. Chem Lett, 2014, 43: 380–387

    Article  CAS  Google Scholar 

  32. Stratakis M, Garcia H. Chem Rev, 2012, 112: 4469–4506

    Article  CAS  PubMed  Google Scholar 

  33. Wallace WT, Whetten RL. J Phys Chem B, 2000, 104: 10964–10968

    Article  CAS  Google Scholar 

  34. Neumaier M, Weigend F, Hampe O, Kappes MM. JChem Phys, 2005, 122: 104702

    Google Scholar 

  35. Häkkinen H. Chem Soc Rev, 2008, 37: 1847–1859

    Article  PubMed  CAS  Google Scholar 

  36. Häberlen OD, Chung SC, Stener M, Rösch N. J Chem Phys, 1997, 106: 5189–5201

    Article  Google Scholar 

  37. Wu X, Senapati L, Nayak SK, Selloni A, Hajaligol M. J Chem Phys, 2002, 117: 4010–4015

    Article  CAS  Google Scholar 

  38. Bürgel C, Reilly NM, Johnson GE, Mitrić R, Kimble ML, Castleman Jr. AW, Bonačić-Koutecký V. J Am Chem Soc, 2008, 130: 1694–1698

    Article  PubMed  CAS  Google Scholar 

  39. Neumaier M, Weigend F, Hampe O, Kappes MM. Faraday Discuss, 2008, 138: 393–406

    Article  CAS  PubMed  Google Scholar 

  40. Neumaier M, Weigend F, Hampe O, Kappes MM. JChem Phys, 2006, 125: 104308

    Google Scholar 

  41. Zheng XY, Kong XJ, Zheng Z, Long LS, Zheng LS. Acc Chem Res, 2018, 51: 517–525

    Article  CAS  PubMed  Google Scholar 

  42. Yuan P, Chen R, Zhang X, Chen F, Yan J, Sun C, Ou D, Peng J, Lin S, Tang Z, Teo BK, Zheng LS, Zheng N. Angew Chem Int Ed, 2019, 58: 835–839

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32088101, 21872145 and 22172167), the Original Innovation Project of CAS (ZDBS-LY-SLH032), Chinese National Innovation Foundation (18-163-14-ZT-002-001-02) and the grant from DICP (DICP I202007). The authors acknowledge the technological support from the Dalian Coherent Light Source.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gao Li, Fangjun Wang or Chunlei Xiao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2022_1267_MOESM1_ESM.docx

In-situ Generation and Global Property Profiling of Metal nanoclusters by Ultraviolet Laser Dissociation-Mass Spectrometry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Qin, Z., Cui, C. et al. In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Sci. China Chem. 65, 1196–1203 (2022). https://doi.org/10.1007/s11426-022-1267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1267-5

Navigation