Abstract
Metal nanoclusters are promising nanomaterials with unique properties, but only a few ones with specific numbers of metal atoms can be obtained and studied up to now. In this study, we establish a new paradigm of in-situ generation and global study of metal nanoclusters with different sizes, constitutions, and charge states, including both accurate constitution characterization and global activity profiling. The complex mixtures of metal nanoclusters are produced by employing single-pulsed 193-nm laser dissociation of monolayer-protected cluster (MPC) precursors within a high-resolution mass spectrometry (HRMS). More than 400 types of bare gold nanoclusters including novel multiply charged (2+ and 3+), S-/P-doped, and silver alloy ones can be efficiently generated and accurately characterized. A distinct size (1 to 142 atoms)- and charge (1+ to 3+)-hierarchy reactivity is clearly observed for the first time. This global cluster study might greatly promote the developments and applications of novel metal nanoclusters.
Similar content being viewed by others
References
Chakraborty I, Pradeep T. Chem Rev, 2017, 117: 8208–8271
Parent DC, Anderson SL. Chem Rev, 1992, 92: 1541–1565
Wilcoxon JP, Abrams BL. Chem Soc Rev, 2006, 35: 1162–1194
Parker JF, Fields-Zinna CA, Murray RW. Acc Chem Res, 2010, 43: 1289–1296
Li G, Jin R. Acc Chem Res, 2013, 46: 1749–1758
Jia Y, Luo Z. Coord Chem Rev, 2019, 400: 213053
Kang X, Zhu M. Chem Soc Rev, 2019, 48: 2422–2457
Luo Z, Castleman Jr. AW, Khanna SN. Chem Rev, 2016, 116: 14456–14492
Yao Q, Feng Y, Fung V, Yu Y, Jiang DE, Yang J, Xie J. Nat Commun, 2017, 8: 1555
Irion MP, Selinger A, Schnabel P. Z Phys D Atoms Molecules Clusters, 1991, 19: 393–396
Dietz TG, Duncan MA, Powers DE, Smalley RE. J Chem Phys, 1981, 74: 6511–6512
Bondybey VE, English JH. J Chem Phys, 1981, 74: 6978–6979
Duncan MA. Rev Sci Instruments, 2012, 83: 041101
Haberland H, Mall M, Moseler M, Qiang Y, Reiners T, Thurner Y. J Vacuum Sci Tech A-Vacuum Surfs Films, 1994, 12: 2925–2930
Grammatikopoulos P, Steinhauer S, Vernieres J, Singh V, Sowwan M. Adv Phys-X, 2016, 1: 81–100
Vezmar I, Alvarez MM, Khoury JT, Salisbury BE, Shafigullin MN, Whetten RL. Z für Physik D Atoms Molecules Clusters, 1997, 40: 147–151
Arnold RJ, Reilly JP. J Am Chem Soc, 1998, 120: 1528–1532
Black DM, Crittenden CM, Brodbelt JS, Whetten RL. J Phys Chem Lett, 2017, 8: 1283–1289
Higaki T, Li Q, Zhou M, Zhao S, Li Y, Li S, Jin R. Acc Chem Res, 2018, 51: 2764–2773
Qian H, Jin R. Chem Mater, 2011, 23: 2209–2217
Lin J, Li W, Liu C, Huang P, Zhu M, Ge Q, Li G. Nanoscale, 2015, 7: 13663–13670
Zheng K, Zhang J, Zhao D, Yang Y, Li Z, Li G. Nano Res, 2019, 12: 501–507
Loos M, Gerber C, Corona F, Hollender J, Singer H. Anal Chem, 2015, 87: 5738–5744
Liu C, Abroshan H, Yan C, Li G, Haruta M. ACS Catal, 2015, 6: 92–99
Chen Y, Liu C, Abroshan H, Li Z, Wang J, Li G, Haruta M. J Catal, 2016, 340: 287–294
Katakuse I, Ichihara T, Fujita Y, Matsuo T, Sakurai T, Matsuda H. Int J Mass Spectrometry Ion Processes, 1985, 67: 229–236
Luo Z, Reber AC, Jia M, Blades WH, Khanna SN, Castleman AW. Chem Sci, 2016, 7: 3067–3074
Chen S, Xiong L, Wang S, Ma Z, Jin S, Sheng H, Pei Y, Zhu M. J Am Chem Soc, 2016, 138: 10754–10757
de Heer WA. Rev Mod Phys, 1993, 65: 611–676
Ferrando R, Jellinek J, Johnston RL. Chem Rev, 2008, 108: 845–910
Taketoshi A, Haruta M. Chem Lett, 2014, 43: 380–387
Stratakis M, Garcia H. Chem Rev, 2012, 112: 4469–4506
Wallace WT, Whetten RL. J Phys Chem B, 2000, 104: 10964–10968
Neumaier M, Weigend F, Hampe O, Kappes MM. JChem Phys, 2005, 122: 104702
Häkkinen H. Chem Soc Rev, 2008, 37: 1847–1859
Häberlen OD, Chung SC, Stener M, Rösch N. J Chem Phys, 1997, 106: 5189–5201
Wu X, Senapati L, Nayak SK, Selloni A, Hajaligol M. J Chem Phys, 2002, 117: 4010–4015
Bürgel C, Reilly NM, Johnson GE, Mitrić R, Kimble ML, Castleman Jr. AW, Bonačić-Koutecký V. J Am Chem Soc, 2008, 130: 1694–1698
Neumaier M, Weigend F, Hampe O, Kappes MM. Faraday Discuss, 2008, 138: 393–406
Neumaier M, Weigend F, Hampe O, Kappes MM. JChem Phys, 2006, 125: 104308
Zheng XY, Kong XJ, Zheng Z, Long LS, Zheng LS. Acc Chem Res, 2018, 51: 517–525
Yuan P, Chen R, Zhang X, Chen F, Yan J, Sun C, Ou D, Peng J, Lin S, Tang Z, Teo BK, Zheng LS, Zheng N. Angew Chem Int Ed, 2019, 58: 835–839
Acknowledgements
This work was supported by the National Natural Science Foundation of China (32088101, 21872145 and 22172167), the Original Innovation Project of CAS (ZDBS-LY-SLH032), Chinese National Innovation Foundation (18-163-14-ZT-002-001-02) and the grant from DICP (DICP I202007). The authors acknowledge the technological support from the Dalian Coherent Light Source.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Conflict of interest
The authors declare no conflict of interest.
Supporting information
The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Electronic Supplementary Material
11426_2022_1267_MOESM1_ESM.docx
In-situ Generation and Global Property Profiling of Metal nanoclusters by Ultraviolet Laser Dissociation-Mass Spectrometry
Rights and permissions
About this article
Cite this article
Liu, Z., Qin, Z., Cui, C. et al. In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Sci. China Chem. 65, 1196–1203 (2022). https://doi.org/10.1007/s11426-022-1267-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-022-1267-5