Skip to main content
Log in

Largest 3d-4f 196-nuclear Gd158Co38 clusters with excellent magnetic cooling

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is a meaningful and challenging work for structural and synthetic chemists to isolate nano-sized high-nuclearity cluster-molecules. In this work, two largest hetero-metallic nano-clusters Gd158Co38 were obtained via the “multi-anions-template” method. Different from the reported giant hollow-nano-clusters, the Ln158 core in Gd158Co38 (the protein-sized nano-clusters, ca. 4.3 nm × 3.6 nm × 3.5 nm) has the highest Ln nuclear number, which is integrated by twelve halide ions (with the form of icosahedron) as key templates, while Co ions (as 3d metals) are located in its periphery. This emergence indicates a novel structure form of non-open Ln-containing high-nuclearity clusters, and affords a consummate pattern to analyse and assemble the complex cluster-molecules. In addition, Gd158Co38@Cl12 breaks the record magnetic entropy change of 3d–4f clusters with −ΔSmmax = 46.95 J kg−1 K−1 at 7.0 T, 2.0 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng YZ, Zheng Z, Chen XM. Coord Chem Rev, 2014, 258–259: 1–15

    Article  CAS  Google Scholar 

  2. Zheng XY, Xie J, Kong XJ, Long LS, Zheng LS. Coord Chem Rev, 2019, 378: 222–236

    Article  CAS  Google Scholar 

  3. Zheng YZ, Evangelisti M, Winpenny REP. Chem Sci, 2011, 2: 99–102

    Article  CAS  Google Scholar 

  4. Chen WP, Singleton J, Qin L, Camón A, Engelhardt L, Luis F, Winpenny REP, Zheng YZ. Nat Commun, 2018, 9: 2107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zheng YZ, Zhou GJ, Zheng Z, Winpenny REP. Chem Soc Rev, 2014, 43: 1462–1475

    Article  CAS  PubMed  Google Scholar 

  6. Liu JH, Lin LD, Wang GQ, Li LY, Sun YQ, Li XX, Zheng ST. Chem Commun, 2020, 56: 10305–10308

    Article  CAS  Google Scholar 

  7. Li XY, Su HF, Li QW, Feng R, Bai HY, Chen HY, Xu J, Bu XH. Angew Chem, 2019, 131: 10290–10294

    Article  Google Scholar 

  8. Chen R, Yan ZH, Kong XJ, Long LS, Zheng LS. Angew Chem Int Ed, 2018, 57: 16796–16800

    Article  CAS  Google Scholar 

  9. Luo XM, Hu ZB, Lin QF, Cheng W, Cao JP, Cui CH, Mei H, Song Y, Xu Y. J Am Chem Soc, 2018, 140: 11219–11222

    Article  CAS  PubMed  Google Scholar 

  10. Zheng XY, Zhang H, Wang Z, Liu P, Du MH, Han YZ, Wei RJ, Ouyang ZW, Kong XJ, Zhuang GL, Long LS, Zheng LS. Angew Chem Int Ed, 2017, 56: 11475–11479

    Article  CAS  Google Scholar 

  11. Qin L, Zhou GJ, Yu YZ, Nojiri H, Schröder C, Winpenny REP, Zheng YZ. J Am Chem Soc, 2017, 139: 16405–16411

    Article  CAS  PubMed  Google Scholar 

  12. Qin L, Yu YZ, Liao PQ, Xue W, Zheng Z, Chen XM, Zheng YZ. Adv Mater, 2016, 28: 10772–10779

    Article  CAS  PubMed  Google Scholar 

  13. Li NF, Lin QF, Luo XM, Cao JP, Xu Y. Inorg Chem, 2019, 58: 10883–10889

    Article  CAS  PubMed  Google Scholar 

  14. Peng JB, Zhang QC, Kong XJ, Ren YP, Long LS, Huang RB, Zheng LS, Zheng Z. Angew Chem Int Ed, 2011, 50: 10649–10652

    Article  CAS  Google Scholar 

  15. Chen WP, Liao PQ, Yu Y, Zheng Z, Chen XM, Zheng YZ. Angew Chem Int Ed, 2016, 55: 9375–9379

    Article  CAS  Google Scholar 

  16. Du MH, Zheng XY, Kong XJ, Long LS, Zheng LS. Matter, 2020, 3: 1334–1349

    Article  Google Scholar 

  17. Luo XM, Li NF, Lin QF, Cao JP, Yuan P, Xu Y. Inorg Chem Front, 2020, 7: 2072–2079

    Article  CAS  Google Scholar 

  18. Kong XJ, Long LS, Huang RB, Zheng LS, Harris TD, Zheng Z. Chem Commun, 2009, 29: 4354–4356

    Article  CAS  Google Scholar 

  19. Du MH, Wang DH, Wu LW, Jiang LP, Li JP, Long LS, Zheng LS, Kong XJ. Angew Chem Int Ed, 2022, 61: 1–6

    Google Scholar 

  20. Zheng XY, Jiang YH, Zhuang GL, Liu DP, Liao HG, Kong XJ, Long LS, Zheng LS. J Am Chem Soc, 2017, 139: 18178–18181

    Article  CAS  PubMed  Google Scholar 

  21. Peng JB, Kong XJ, Zhang QC, Orendáč M, Prokleška J, Ren YP, Long LS, Zheng Z, Zheng LS. J Am Chem Soc, 2014, 136: 17938–17941

    Article  CAS  PubMed  Google Scholar 

  22. Chen WP, Liao PQ, Jin PB, Zhang L, Ling BK, Wang SC, Chan YT, Chen XM, Zheng YZ. J Am Chem Soc, 2020, 142: 4663–4670

    Article  CAS  PubMed  Google Scholar 

  23. Lin QF, Li J, Luo XM, Cui CH, Song Y, Xu Y. Inorg Chem, 2018, 57: 4799–4802

    Article  CAS  PubMed  Google Scholar 

  24. Li SR, Wang HY, Su HF, Chen HJ, Du MH, Long LS, Kong XJ, Zheng LS. Small Methods, 2021, 5: 2000777

    Article  CAS  Google Scholar 

  25. Müller A, Shah SQN, Bögge H, Schmidtmann M. Nature, 1999, 397: 48–50

    Article  Google Scholar 

  26. Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A. Angew Chem, 2002, 114: 1210–1215

    Article  Google Scholar 

  27. Anson CE, Eichhöfer A, Issac I, Fenske D, Fuhr O, Sevillano P, Persau C, Stalke D, Zhang J. Angew Chem Int Ed, 2008, 47: 1326–1331

    Article  CAS  Google Scholar 

  28. Wu YL, Li XX, Qi YJ, Yu H, Jin L, Zheng ST. Angew Chem Int Ed, 2018, 57: 8572–8576

    Article  CAS  Google Scholar 

  29. Peng JB, Zhang QC, Kong XJ, Zheng YZ, Ren YP, Long LS, Huang RB, Zheng LS, Zheng Z. J Am Chem Soc, 2012, 134: 3314–3317

    Article  CAS  PubMed  Google Scholar 

  30. Kong XJ, Ren YP, Chen WX, Long LS, Zheng Z, Huang RB, Zheng LS. Angew Chem Int Ed, 2008, 47: 2398–2401

    Article  CAS  Google Scholar 

  31. Zhang HG, Du YC, Yang H, Zhuang MY, Li DC, Dou JM. Inorg Chem Front, 2019, 6: 1904–1908

    Article  CAS  Google Scholar 

  32. Yu Y, Pan X, Cui C, Luo X, Li N, Mei H, Xu Y. Inorg Chem, 2020, 59: 5593–5599

    Article  CAS  PubMed  Google Scholar 

  33. Zhang ZM, Pan LY, Lin WQ, Leng JD, Guo FS, Chen YC, Liu JL, Tong ML. Chem Commun, 2013, 49: 8081–8083

    Article  CAS  Google Scholar 

  34. Zheng ST, Wu T, Irfanoglu B, Zuo F, Feng P, Bu X. Angew Chem Int Ed, 2011, 50: 8034–8037

    Article  CAS  Google Scholar 

  35. Han H, Ding YS, Zhu X, Han T, Zheng YZ, Liao W. Inorg Chem Front, 2020, 7: 4070–4076

    Article  CAS  Google Scholar 

  36. Lun HJ, Du MH, Wang DH, Kong XJ, Long LS, Zheng LS. Inorg Chem, 2020, 59: 7900–7904

    Article  CAS  PubMed  Google Scholar 

  37. Zheng YZ, Evangelisti M, Tuna F, Winpenny REP. J Am Chem Soc, 2012, 134: 1057–1065

    Article  CAS  PubMed  Google Scholar 

  38. Lun HJ, Xu L, Kong XJ, Long LS, Zheng LS. Inorg Chem, 2021, 60: 10079–10083

    Article  CAS  PubMed  Google Scholar 

  39. Fan S, Xu SH, Zheng XY, Yan ZH, Kong XJ, Long LS, Zheng LS. CrystEngComm, 2018, 20: 2120–2125

    Article  CAS  Google Scholar 

  40. Chen R, Chen CL, Du MH, Wang X, Wang C, Long LS, Kong XJ, Zheng LS. Chem Commun, 2021, 57: 3611–3614

    Article  CAS  Google Scholar 

  41. Siddiqi ZA, Shahid M, Khalid M, Kumar S. Eur J Med Chem, 2009, 44: 2517–2522

    Article  CAS  PubMed  Google Scholar 

  42. Xu HB, Yan LK, Su ZM, Yue SM, Zhang HJ, Shao KZ, Zhao YH. Trans Metal Chem, 2004, 29: 471–476

    Article  Google Scholar 

  43. Booy M, Swaddle TW. Can J Chem, 2011, 55: 1762–1769

    Article  Google Scholar 

  44. Yin JJ, Chen C, Zhuang GL, Zheng J, Zheng XY, Kong XJ. Inorg Chem, 2020, 59: 1959–1966

    Article  CAS  PubMed  Google Scholar 

  45. Mishra V, Lloret F, Mukherjee R. Inorg Chim Acta, 2006, 359: 4053–4062

    Article  CAS  Google Scholar 

  46. Li N, Lin Q, Han Y, Du Z, Xu Y. Chin Chem Lett, 2021, 32: 3803–3806

    Article  CAS  Google Scholar 

  47. Liu DP, Lin XP, Zhang H, Zheng XY, Zhuang GL, Kong XJ, Long LS, Zheng LS. Angew Chem Int Ed, 2016, 55: 4532–4536

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0306004), the National Natural Science Foundation of China (21571103, 21973038), Jiangsu Province (BK20191359), and the Joint Fund for Regional Innovation and Development (U20A2073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Mei, You Song or Yan Xu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, NF., Luo, XM., Wang, J. et al. Largest 3d-4f 196-nuclear Gd158Co38 clusters with excellent magnetic cooling. Sci. China Chem. 65, 1577–1583 (2022). https://doi.org/10.1007/s11426-022-1259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1259-9

Navigation