Skip to main content
Log in

Cleavable Cys labeling directed Lys site-selective stapling and single-site modification

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

Site-selective modification of peptide/protein is a vital approach to disclose post-translational modifications (PTMs) and plays a crucial role in chemical biology, as well as drug development. Compared with synthetic and chemical biology methods, chemical modification of native peptide/protein provides a more versatile approach to achieve late-stage diversification for functional studies. Lysine featured high nucleophilicity, frequency, and solvent accessibility, making its site-selective modification important but elusive. Herein, we reported a visible-light-driven and Cys-directed Lys site-selective stapling approach for peptide/protein. By cleavable Cys anchoring, site-selective Lys single-site modification was achieved, and this method could be applied to multi-functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Lin H, Caroll KS. Chem Rev, 2018, 118: 887–888

    Article  CAS  PubMed  Google Scholar 

  2. Müller MM. Biochemistry, 2018, 57: 177–185

    Article  PubMed  Google Scholar 

  3. Baker PJ, De Nardo D, Moghaddas F, Tran LS, Bachem A, Nguyen T, Hayman T, Tye H, Vince JE, Bedoui S, Ferrero RL, Masters SL. Physiol Rev, 2017, 97: 1165–1209

    Article  CAS  PubMed  Google Scholar 

  4. Choo J, Heo G, Pothoulakis C, Im E. Pharmacol Res, 2021, 165: 105412

    Article  CAS  PubMed  Google Scholar 

  5. Krall N, da Cruz FP, Boutureira O, Bernardes GJL. Nat Chem, 2016, 8: 103–113

    Article  CAS  PubMed  Google Scholar 

  6. Lang K, Chin JW. Chem Rev, 2014, 114: 4764–4806

    Article  CAS  PubMed  Google Scholar 

  7. Boutureira O, Bernardes GJL. Chem Rev, 2015, 115: 2174–2195

    Article  CAS  PubMed  Google Scholar 

  8. Chuh KN, Batt AR, Pratt MR. Cell Chem Biol, 2016, 23: 86–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Agouridas V, El Mahdi O, Melnyk O. J Med Chem, 2020, 63: 15140–15152

    Article  CAS  PubMed  Google Scholar 

  10. Wu N, Deiters A, Cropp TA, King D, Schultz PG. J Am Chem Soc, 2004, 126: 14306–14307

    Article  CAS  PubMed  Google Scholar 

  11. Wang ZA, Kurra Y, Wang X, Zeng Y, Lee YJ, Sharma V, Lin H, Dai SY, Liu WR. Angew Chem Int Ed, 2017, 56: 1643–1647

    Article  CAS  Google Scholar 

  12. Schramma KR, Bushin LB, Seyedsayamdost MR. Nat Chem, 2015, 7: 431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Chem Rev, 2022, 122: 1752–1829

    Article  CAS  PubMed  Google Scholar 

  14. Hoyt EA, Cal PMSD, Oliveira BL, Bernardes GJL. Nat Rev Chem, 2019, 3: 147–171

    Article  CAS  Google Scholar 

  15. King TA, Mandrup Kandemir J, Walsh SJ, Spring DR. Chem Soc Rev, 2021, 50: 39–57

    Article  CAS  PubMed  Google Scholar 

  16. Xu L, Silva MJSA, Gois PMP, Kuan SL, Weil T. Chem Sci, 2021, 12: 13321–13330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seki H, Walsh SJ, Bargh JD, Parker JS, Carroll J, Spring DR. Chem Sci, 2021, 12: 9060–9068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu L, Kuan SL, Weil T. Angew Chem Int Ed, 2021, 60: 13757–13777

    Article  CAS  Google Scholar 

  19. Wang ZA, Cole PA. Cell Chem Biol, 2020, 27: 953–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. deGruyter JN, Malins LR, Baran PS. Biochemistry, 2017, 56: 3863–3873

    Article  CAS  PubMed  Google Scholar 

  21. Haque M, Forte N, Baker JR. Chem Commun, 2021, 57: 10689–10702

    Article  CAS  Google Scholar 

  22. Kozlowski LP. Nucleic Acids Res, 2017, 45: D1112–D1116

    Article  CAS  PubMed  Google Scholar 

  23. Abbasov ME, Kavanagh ME, Ichu TA, Lazear MR, Tao Y, Crowley VM, Am Ende CW, Hacker SM, Ho J, Dix MM, Suciu R, Hayward MM, Kiessling LL, Cravatt BF. Nat Chem, 2021, 13: 1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Apel C, Kasper MA, Stieger CE, Hackenberger CPR, Christmann M. Org Lett, 2019, 21: 10043–10047

    Article  CAS  PubMed  Google Scholar 

  25. Kasper MA, Glanz M, Oder A, Schmieder P, von Kries JP, Hackenberger CPR. Chem Sci, 2019, 10: 6322–6329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chilamari M, Kalra N, Shukla S, Rai V. Chem Commun, 2018, 54: 7302–7305

    Article  CAS  Google Scholar 

  27. Chilamari M, Purushottam L, Rai V. Chem Eur J, 2017, 23: 3819–3823

    Article  CAS  PubMed  Google Scholar 

  28. Matos MJ, Oliveira BL, Martínez-Sáez N, Guerreiro A, Cal PMSD, Bertoldo J, Maneiro M, Perkins E, Howard J, Deery MJ, Chalker JM, Corzana F, Jiménez-Osés G, Bernardes GJL. J Am Chem Soc, 2018, 140: 4004–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen X, Muthoosamy K, Pfisterer A, Neumann B, Weil T. Bioconjug Chem, 2012, 23: 500–508

    Article  CAS  PubMed  Google Scholar 

  30. Adusumalli SR, Rawale DG, Thakur K, Purushottam L, Reddy NC, Kalra N, Shukla S, Rai V. Angew Chem Int Ed, 2020, 59: 10332–10336

    Article  CAS  Google Scholar 

  31. Li B, Tang H, Turlik A, Wan Z, Xue XS, Li L, Yang X, Li J, He G, Houk KN, Chen G. Angew Chem Int Ed, 2021, 60: 6646–6652

    Article  CAS  Google Scholar 

  32. Ceballos J, Grinhagena E, Sangouard G, Heinis C, Waser J. Angew Chem Int Ed, 2021, 60: 9022–9031

    Article  CAS  Google Scholar 

  33. Silva MJSA, Faustino H, Coelho JAS, Pinto MV, Fernandes A, Compañón I, Corzana F, Gasser G, Gois PMP. Angew Chem Int Ed, 2021, 60: 10850–10857

    Article  CAS  Google Scholar 

  34. Kubota K, Dai P, Pentelute BL, Buchwald SL. J Am Chem Soc, 2018, 140: 3128–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Zhang Q, Wong CTT, Li X. J Am Chem Soc, 2019, 141: 12274–12279

    Article  CAS  PubMed  Google Scholar 

  36. Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Angew Chem Int Ed, 2019, 58: 14120–14124

    Article  CAS  Google Scholar 

  37. Adamson C, Kajino H, Kawashima SA, Yamatsugu K, Kanai M. J Am Chem Soc, 2021, 143: 14976–14980

    Article  CAS  PubMed  Google Scholar 

  38. Pettinger J, Jones K, Cheeseman MD. Angew Chem Int Ed, 2017, 56: 15200–15209

    Article  CAS  Google Scholar 

  39. Asano S, Patterson JT, Gaj T, Barbas III CF. Angew Chem Int Ed, 2014, 53: 11783–11786

    Article  CAS  Google Scholar 

  40. Marino SM, Gladyshev VN. J Mol Biol, 2010, 404: 902–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dadová J, Wu KJ, Isenegger PG, Errey JC, Bernardes GJL, Chalker JM, Raich L, Rovira C, Davis BG. ACS Cent Sci, 2017, 3: 1168–1173

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li J, Deng JJ, Yin Z, Hu QL, Ge Y, Song Z, Zhang Y, Chan ASC, Li H, Xiong XF. Chem Sci, 2021, 12: 5209–5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Lai W, Pang A, Liu L, Ye L, Xiong XF. Org Lett, 2022, 24: 1673–1677

    Article  CAS  PubMed  Google Scholar 

  44. Hu W, Yuan Y, Wang CH, Tian HT, Guo AD, Nie HJ, Hu H, Tan M, Tang Z, Chen XH. Chem, 2019, 5: 2955–2968

    Article  CAS  Google Scholar 

  45. Guo AD, Wei D, Nie HJ, Hu H, Peng C, Li ST, Yan KN, Zhou BS, Feng L, Fang C, Tan M, Huang R, Chen XH. Nat Commun, 2020, 11: 5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Natural Science Funds for Distinguished Young Scholar (2018B030306017), the National Natural Science Foundation of China (22077144), Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery (2019B030301005), and Key Research and Development Program of Guangdong Province (2020B1111110003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Albert S. C. Chan or Xiao-Feng Xiong.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, QL., Song, Z. et al. Cleavable Cys labeling directed Lys site-selective stapling and single-site modification. Sci. China Chem. 65, 1356–1361 (2022). https://doi.org/10.1007/s11426-022-1252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1252-7

Keywords

Navigation