Skip to main content
Log in

Stable perovskite solar cells with 23.12% efficiency and area over 1 cm2 by an all-in-one strategy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

To realize the commercialization of perovskite solar cells (PSCs), it is required to overcome the remaining challenges in device enlargement and operational stability. Here, we report an all-in-one strategy by integrating the oxidation of hole-transport material (HTM) with the formation of the passivation layer, which simultaneously solved the stability issues caused by HTM oxidation and realized the uniform defects in passivation over a large area. The resulting devices achieved a certified PCE of 23.12% on average with an aperture area of 1.04 cm2 and are reproducible with high operational stability because of the exclusion of air exposure, hygroscopic Li-TFSI, and the lithium-based wastes, maintaining ca. 90% of their initial PCEs after operation at the maximum power point under continuous 1 sun illumination for 1,600 h. Our strategy simplifies the fabrication process of PSCs, which is compatible with commercial-scale methods, offering facile access to efficient and stable large-area PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316–319

    Article  CAS  PubMed  Google Scholar 

  2. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234–1237

    Article  CAS  PubMed  Google Scholar 

  3. Best Research-Cell Efficiency Chart (National Renewable Energy Laboratory), 2019. https://www.nrel.gov/pv/cell-efficiency.html

  4. Wu T, Liu X, He X, Wang Y, Meng X, Noda T, Yang X, Han L. Sci China Chem, 2020, 63: 107–115

    Article  CAS  Google Scholar 

  5. Luo X, Wu T, Wang Y, Lin X, Su H, Han Q, Han L. Sci China Chem, 2020, 64: 218–227

    Article  Google Scholar 

  6. Wang Y, Han L. Sci China Chem, 2019, 62: 822–828

    Article  CAS  Google Scholar 

  7. Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354: 206–209

    Article  CAS  PubMed  Google Scholar 

  8. Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W. Nat Energy, 2018, 3: 61–67

    Article  CAS  Google Scholar 

  9. Su TS, Eickemeyer FT, Hope MA, Jahanbakhshi F, Mladenović M, Li J, Zhou Z, Mishra A, Yum JH, Ren D, Krishna A, Ouellette O, Wei TC, Zhou H, Huang HH, Mensi MD, Sivula K, Zakeeruddin SM, Milić JV, Hagfeldt A, Rothlisberger U, Emsley L, Zhang H, Grätzel M. J Am Chem Soc, 2020, 142: 19980–19991

    Article  CAS  PubMed  Google Scholar 

  10. Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J. Energy Environ Sci, 2015, 8: 1544–1550

    Article  CAS  Google Scholar 

  11. Hwang K, Jung YS, Heo YJ, Scholes FH, Watkins SE, Subbiah J, Jones DJ, Kim DY, Vak D. Adv Mater, 2015, 27: 1241–1247

    Article  CAS  PubMed  Google Scholar 

  12. Wei Z, Chen H, Yan K, Yang S. Angew Chem Int Ed, 2014, 53: 13239–13243

    Article  CAS  Google Scholar 

  13. Chen H, Ye F, Tang W, He J, Yin M, Wang Y, Xie F, Bi E, Yang X, Grätzel M, Han L. Nature, 2017, 550: 92–95

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944–948

    Article  CAS  PubMed  Google Scholar 

  15. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J. Nature, 2019, 567: 511–515

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photon, 2019, 13: 460–466

    Article  CAS  Google Scholar 

  17. Yang G, Ren Z, Liu K, Qin M, Deng W, Zhang H, Wang H, Liang J, Ye F, Liang Q, Yin H, Chen Y, Zhuang Y, Li S, Gao B, Wang J, Shi T, Wang X, Lu X, Wu H, Hou J, Lei D, So SK, Yang Y, Fang G, Li G. Nat Photon, 2021, 15: 681–689

    Article  CAS  Google Scholar 

  18. Park NG, Zhu K. Nat Rev Mater, 2020, 5: 333–350

    Article  CAS  Google Scholar 

  19. Peng J, Walter D, Ren Y, Tebyetekerwa M, Wu Y, Duong T, Lin Q, Li J, Lu T, Mahmud MA, Lem OLC, Zhao S, Liu W, Liu Y, Shen H, Li L, Kremer F, Nguyen HT, Choi DY, Weber KJ, Catchpole KR, White TP. Science, 2021, 371: 390–395

    Article  CAS  PubMed  Google Scholar 

  20. Schultz O, Mette A, Hermle M, Glunz SW. Prog Photovolt-Res Appl, 2008, 16: 317–324

    Article  CAS  Google Scholar 

  21. Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X, Han L. Science, 2019, 365: 687–691

    Article  CAS  PubMed  Google Scholar 

  22. Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L. Nat Commun, 2017, 8: 15330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hui W, Chao L, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y, Huang W. Science, 2021, 371: 1359–1364

    Article  CAS  PubMed  Google Scholar 

  24. Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang JTW, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith HJ. Nature, 2019, 571: 245–250

    Article  CAS  PubMed  Google Scholar 

  25. Zhang C, Liang S, Liu W, Eickemeyer FT, Cai X, Zhou K, Bian J, Zhu H, Zhu C, Wang N, Wang Z, Zhang J, Wang Y, Hu J, Ma H, Xin C, Zakeeruddin SM, Grätzel M, Shi Y. Nat Energy, 2021, 6: 1154–1163

    Article  CAS  Google Scholar 

  26. Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico ME, Kirkpatrik J, Ball JM, Docampo P, McPherson I, Snaith HJ. Phys Chem Chem Phys, 2013, 15: 2572–2579

    Article  CAS  PubMed  Google Scholar 

  27. Schloemer TH, Christians JA, Luther JM, Sellinger A. Chem Sci, 2019, 10: 1904–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan B, Raga SR, Chesman ASR, Fürer SO, Zheng F, McMeekin DP, Jiang L, Mao W, Lin X, Wen X, Lu J, Cheng Y-, Bach U. Adv Energy Mater, 2019, 9: 1901519

    Article  Google Scholar 

  29. Hawash Z, Ono LK, Qi Y. Adv Mater Interfaces, 2018, 5: 1700623

    Article  Google Scholar 

  30. Kong J, Shin Y, Röhr JA, Wang H, Meng J, Wu Y, Katzenberg A, Kim G, Kim DY, Li TD, Chau E, Antonio F, Siboonruang T, Kwon S, Lee K, Kim JR, Modestino MA, Wang H, Taylor AD. Nature, 2021, 594: 51–56

    Article  CAS  PubMed  Google Scholar 

  31. Dawson JA, Naylor AJ, Eames C, Roberts M, Zhang W, Snaith HJ, Bruce PG, Islam MS. ACS Energy Lett, 2017, 2: 1818–1824

    Article  CAS  Google Scholar 

  32. Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J. Adv Mater, 2017, 29: 1703852

    Article  Google Scholar 

  33. Haynes WM, Lide DR, Bruno TJ. CRC Hanbook of Chemistry and Physics. Boca Raton: CRC Press, 1992

    Google Scholar 

  34. Gräf K, Rahim MA, Das S, Thelakkat M. Dyes Pigm, 2013, 99: 1101–1106

    Article  Google Scholar 

  35. Wang Y, Liu X, Zhou Z, Ru P, Chen H, Yang X, Han L. Adv Mater, 2019, 31: 1803231

    Article  CAS  Google Scholar 

  36. Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun LD, Yan CH. Science, 2019, 363: 265–270

    Article  CAS  PubMed  Google Scholar 

  37. Schölin R, Karlsson MH, Eriksson SK, Siegbahn H, Johansson EMJ, Rensmo H. J Phys Chem C, 2012, 116: 26300–26305

    Article  Google Scholar 

  38. Wang S, Yuan W, Meng YS. ACS Appl Mater Interfaces, 2015, 7: 24791–24798

    Article  CAS  PubMed  Google Scholar 

  39. Wang K, Liu X, Huang R, Wu C, Yang D, Hu X, Jiang X, Duchamp JC, Dorn H, Priya S. ACS Energy Lett, 2019, 4: 1852–1861

    Article  CAS  Google Scholar 

  40. Liu Y, Hu Y, Zhang X, Zeng P, Li F, Wang B, Yang Q, Liu M. Nano Energy, 2020, 70: 104483

    Article  CAS  Google Scholar 

  41. Juarez-Perez EJ, Leyden MR, Wang S, Ono LK, Hawash Z, Qi Y. Chem Mater, 2016, 28: 5702–5709

    Article  CAS  Google Scholar 

  42. Dong W, Ma F, Wang R, Dou S, Cui P, Huang H, Ji J, Jia E, Jia X, Sajid S, Elseman AM, Chu L, Li Y, Jiang B, Qiao J, Yuan Y, Li M. Adv Mater, 2018, 30: 1707583

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11834011, 12074245, 52102281, 51901132), the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (2021QNRC001) and Shanghai Sailing Program (21YF1421600). This work performed at the University of Tokyo was supported by JSPS KAKENHI (JP21H02040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbo Wang or Liyuan Han.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supplementing information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Lin, X., Wang, Y. et al. Stable perovskite solar cells with 23.12% efficiency and area over 1 cm2 by an all-in-one strategy. Sci. China Chem. 65, 1321–1329 (2022). https://doi.org/10.1007/s11426-022-1244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1244-y

Navigation