Skip to main content
Log in

Successive construction of cucurbit[8]uril-based covalent organic frameworks from a supramolecular organic framework through photochemical reactions in water

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

Functional framework materials have been developed for many applications including adsorption, asymmetric catalysis, sensing, drug delivery, optical device, and so on. Here, we report the successive construction of two cucurbit[8]uril-based covalent organic frameworks (COFs) including tetraphenylethene-based COF (COF-1) and phenanthrene-based COF (COF-2) from a two-dimensional (2D) periodic cucurbit[8]uril-based supramolecular organic framework (SOF-1) as the prearranged structure via the intermolecular photocycloaddition of the coumarin units and the intramolecular photocyclization of the tetraphenylethene (TPE) units under ultraviolet (UV) irradiation (365 nm) in water. In this case, oxygen (O2) plays an important role in the photocyclization of the TPE units into the phenanthrene units in the transform process from SOF-1 or COF-1 to COF-2. As the TPE units further form phenanthrenes after UV-irradiation, COF-2 exhibits aggregation-caused quenching effect and weak green emission, while COF-1 displays a strong yellow emission due to the aggregation-induced emission. Besides, the adaptive chirality of cationic COF-1 as a biomolecular sensor can be efficiently induced by chiral anionic biomolecules including adenosine-5′-triphosphate (ATP) and adenosine-5′-diphosphate (ADP) to exhibit sensitive negative circular dichroism responses in water. This supramolecular approach to construct COF from SOF via photochemical reactions may open a new opportunity for the construction and application of the water-soluble COFs with well structural controllability, unique photophysical properties, and favorable biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Change history

References

  1. Zhang KD, Tian J, Hanifi D, Zhang Y, Sue ACH, Zhou TY, Zhang L, Zhao X, Liu Y, Li ZT. J Am Chem Soc, 2013, 135: 17913–17918

    Article  CAS  PubMed  Google Scholar 

  2. Tian J, Zhou TY, Zhang SC, Aloni S, Altoe MV, Xie SH, Wang H, Zhang DW, Zhao X, Liu Y, Li ZT. Nat Commun, 2014, 5: 5574

    Article  CAS  PubMed  Google Scholar 

  3. Tian J, Xu ZY, Zhang DW, Wang H, Xie SH, Xu DW, Ren YH, Wang H, Liu Y, Li ZT. Nat Commun, 2016, 7: 11580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lü J, Perez-Krap C, Suyetin M, Alsmail NH, Yan Y, Yang S, Lewis W, Bichoutskaia E, Tang CC, Blake AJ, Cao R, Schröder M. J Am Chem Soc, 2014, 136: 12828–12831

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adachi T, Ward MD. Acc Chem Res, 2016, 49: 2669–2679

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Q, Yao X, Qu DH, Ma X. Chem Commun, 2014, 50: 1567–1569

    Article  CAS  Google Scholar 

  7. Zhang QW, Li D, Li X, White PB, Mecinović J, Ma X, Ågren H, Nolte RJM, Tian H. J Am Chem Soc, 2016, 138: 13541–13550

    Article  CAS  PubMed  Google Scholar 

  8. Li D, Han Y, Jiang Y, Jiang G, Sun H, Sun Z, Zhang QW, Tian Y. ACS Appl Mater Interfaces, 2022, 14: 1807–1816

    Article  CAS  PubMed  Google Scholar 

  9. Tian J, Chen L, Zhang DW, Liu Y, Li ZT. Chem Commun, 2016, 52: 6351–6362

    Article  CAS  Google Scholar 

  10. Yang B, Yu SB, Zhang PQ, Wang ZK, Qi QY, Wang XQ, Xu XH, Yang HB, Wu ZQ, Liu Y, Ma D, Li ZT. Angew Chem Int Ed, 2021, 60: 26268–26275

    Article  CAS  Google Scholar 

  11. Tian J, Wang H, Zhang DW, Liu Y, Li ZT. Natl Sci Rev, 2017, 4: 426–436

    Article  CAS  Google Scholar 

  12. Xu C, Yin C, Wu W, Ma X. Sci China Chem, 2022, 65: 75–81

    Article  CAS  Google Scholar 

  13. Zhang L, Zhou TY, Tian J, Wang H, Zhang DW, Zhao X, Liu Y, Li ZT. Polym Chem, 2014, 5: 4715–4721

    Article  CAS  Google Scholar 

  14. Zhang Y, Zhan TG, Zhou TY, Qi QY, Xu XN, Zhao X. Chem Commun, 2016, 52: 7588–7591

    Article  CAS  Google Scholar 

  15. Lee HJ, Kim HJ, Lee EC, Kim J, Park SY. Chem Asian J, 2018, 13: 390–394

    Article  CAS  PubMed  Google Scholar 

  16. Yin ZJ, Jiang SY, Liu N, Qi QY, Wu ZQ, Zhan TG, Zhao X. CCS Chem, 2022, 4: 141–150

    Article  CAS  Google Scholar 

  17. Yang B, Zhang JW, Yu SB, Wang ZK, Zhang PQ, Yang XD, Qi QY, Yang GY, Ma D, Li ZT. Sci China Chem, 2021, 64: 1228–1234

    Article  CAS  Google Scholar 

  18. Yang B, Wang H, Zhang D, Li Z. Chin J Chem, 2020, 38: 970–980

    Article  CAS  Google Scholar 

  19. Zhang DW, Wang H, Li ZT. Chem J Chin Univer, 2020, 41: 1139–1150

    CAS  Google Scholar 

  20. Liang RR, A RH, Xu SQ, Qi QY, Zhao X. J Am Chem Soc, 2020, 142: 70–74

    Article  CAS  PubMed  Google Scholar 

  21. Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Schlesiger C, Praetz S, Schmidt J, Thomas A. J Am Chem Soc, 2019, 141: 6623–6630

    Article  CAS  PubMed  Google Scholar 

  22. Ding H, Li J, Xie G, Lin G, Chen R, Peng Z, Yang C, Wang B, Sun J, Wang C. Nat Commun, 2018, 9: 5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haldar S, Chakraborty D, Roy B, Banappanavar G, Rinku K, Mullangi D, Hazra P, Kabra D, Vaidhyanathan R. J Am Chem Soc, 2018, 140: 13367–13374

    Article  CAS  PubMed  Google Scholar 

  24. Hao K, Guo Z, Lin L, Sun P, Li Y, Tian H, Chen X. Sci China Chem, 2021, 64: 1235–1241

    Article  CAS  Google Scholar 

  25. Waller PJ, Gándara F, Yaghi OM. Acc Chem Res, 2015, 48: 3053–3063

    Article  CAS  PubMed  Google Scholar 

  26. Kandambeth S, Dey K, Banerjee R. J Am Chem Soc, 2019, 141: 1807–1822

    Article  CAS  PubMed  Google Scholar 

  27. Zhang CC, Zhang YM, Zhang ZY, Wu X, Yu Q, Liu Y. Chem Commun, 2019, 55: 8138–8141

    Article  CAS  Google Scholar 

  28. Gao ZZ, Wang ZK, Wei L, Yin G, Tian J, Liu CZ, Wang H, Zhang DW, Zhang YB, Li X, Liu Y, Li ZT. ACS Appl Mater Interfaces, 2020, 12: 1404–1411

    Article  CAS  PubMed  Google Scholar 

  29. Kwok RTK, Leung CWT, Lam JWY, Tang BZ. Chem Soc Rev, 2015, 44: 4228–4238

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Dong Y, Cheng L, Qin C, Nian H, Zhang H, Yu Y, Cao L. J Am Chem Soc, 2019, 141: 8412–8415

    Article  CAS  PubMed  Google Scholar 

  31. Cheng L, Zhang H, Dong Y, Zhao Y, Yu Y, Cao L. Chem Commun, 2019, 55: 2372–2375

    Article  CAS  Google Scholar 

  32. Duan H, Li Y, Li Q, Wang P, Liu X, Cheng L, Yu Y, Cao L. Angew Chem Int Ed, 2020, 59: 10101–10110

    Article  CAS  Google Scholar 

  33. Nian H, Li A, Li Y, Cheng L, Wang L, Xu W, Cao L. Chem Commun, 2020, 56: 3195–3198

    Article  CAS  Google Scholar 

  34. Cheng L, Liu K, Duan Y, Duan H, Li Y, Gao M, Cao L. CCS Chem, 2021, 3: 2749–2763

    Article  CAS  Google Scholar 

  35. Cheng L, Tian P, Li Q, Li A, Cao L. CCS Chem, 2021, 3: 3608–3614

    Google Scholar 

  36. Guo X, Zhu N, Wang SP, Li G, Bai FQ, Li Y, Han Y, Zou B, Chen XB, Shi Z, Feng S. Angew Chem Int Ed, 2020, 59: 19716–19721

    Article  CAS  Google Scholar 

  37. Wang Z, Zhu CY, Mo JT, Fu PY, Zhao YW, Yin SY, Jiang JJ, Pan M, Su CY. Angew Chem Int Ed, 2019, 58: 9752–9757

    Article  CAS  Google Scholar 

  38. Wu X, Han X, Xu Q, Liu Y, Yuan C, Yang S, Liu Y, Jiang J, Cui Y. J Am Chem Soc, 2019, 141: 7081–7089

    Article  CAS  PubMed  Google Scholar 

  39. Zhang M, Li L, Lin Q, Tang M, Wu Y, Ke C. J Am Chem Soc, 2019, 141: 5154–5158

    Article  CAS  PubMed  Google Scholar 

  40. Xu SQ, Zhang X, Nie CB, Pang ZF, Xu XN, Zhao X. Chem Commun, 2015, 51: 16417–16420

    Article  CAS  Google Scholar 

  41. Li Y, Dong Y, Miao X, Ren Y, Zhang B, Wang P, Yu Y, Li B, Isaacs L, Cao L. Angew Chem Int Ed, 2018, 57: 729–733

    Article  CAS  Google Scholar 

  42. Li Y, Qin C, Li Q, Wang P, Miao X, Jin H, Ao W, Cao L. Adv Opt Mater, 2020, 8: 1902154

    Article  CAS  Google Scholar 

  43. Jiang X, Cui X, Duncan AJE, Li L, Hughes RP, Staples RJ, Alexandrov EV, Proserpio DM, Wu Y, Ke C. J Am Chem Soc, 2019, 141: 10915–10923

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Li B, Wu H, Hu TL, Yao Z, Zhou W, Xiang S, Chen B. J Am Chem Soc, 2015, 137: 9963–9970

    Article  CAS  PubMed  Google Scholar 

  45. Huang Q, Li W, Mao Z, Qu L, Li Y, Zhang H, Yu T, Yang Z, Zhao J, Zhang Y, Aldred MP, Chi Z. Nat Commun, 2019, 10: 3074

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Li Q, Miao X, Qin C, Chu D, Cao L. Angew Chem Int Ed, 2021, 60: 6744–6751

    Article  CAS  Google Scholar 

  47. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L. J Am Chem Soc, 2005, 127: 15959–15967

    Article  CAS  PubMed  Google Scholar 

  48. Sun LY, Sinha N, Yan T, Wang YS, Tan TTY, Yu L, Han YF, Hahn FE. Angew Chem Int Ed, 2018, 57: 5161–5165

    Article  CAS  Google Scholar 

  49. Zhang Q, Qu DH, Wu J, Ma X, Wang Q, Tian H. Langmuir, 2013, 29: 5345–5350

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Q, Qu DH, Ma X, Tian H. Chem Commun, 2013, 49: 9800–9802

    Article  CAS  Google Scholar 

  51. Rekharsky MV, Mori T, Yang C, Ko YH, Selvapalam N, Kim H, Sobransingh D, Kaifer AE, Liu S, Isaacs L, Chen W, Moghaddam S, Gilson MK, Kim K, Inoue Y. Proc Natl Acad Sci USA, 2007, 104: 20737–20742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haldar R, Diring S, Samanta PK, Muth M, Clancy W, Mazel A, Schlabach S, Kirschhöfer F, Brenner-Weiß G, Pati SK, Odobel F, Wöll C. Angew Chem Int Ed, 2018, 57: 13662–13665

    Article  CAS  Google Scholar 

  53. Kang Y, Tang X, Yu H, Cai Z, Huang Z, Wang D, Xu JF, Zhang X. Chem Sci, 2017, 8: 8357–8361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang B, Li WL, Chang Y, Yuan B, Wu Y, Zhang MT, Xu JF, Li J, Zhang X. Angew Chem Int Ed, 2019, 58: 15526–15531

    Article  CAS  Google Scholar 

  55. Li Y, An YY, Fan JZ, Liu XX, Li X, Hahn FE, Wang YY, Han YF. Angew Chem Int Ed, 2020, 59: 10073–10080

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22122108, 21971208), the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (2021JC-37), and the Fok Ying Tong Education Foundation (171010). L. Cao thanks Huijun Ma for performing HR-TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Cao.

Additional information

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting Information

11426_2022_1231_MOESM1_ESM.pdf

Successive Construction of Cucurbit[8]uril-Based Covalent Or-ganic Frameworks from a Supramolecular Organic Framework Through Photochemical Reactions in Water

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yan, C., Li, Q. et al. Successive construction of cucurbit[8]uril-based covalent organic frameworks from a supramolecular organic framework through photochemical reactions in water. Sci. China Chem. 65, 1279–1285 (2022). https://doi.org/10.1007/s11426-022-1231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1231-5

Navigation