Skip to main content
Log in

Isolation of a carbon nanohoop with Möbius topology

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carbon nanohoop, a class of constrained molecular architecture consisting of linked arene units, has attracted considerable interest from both experimental and theoretical chemists due to its synthetic challenge and aesthetic architectures. Another fascinating and synthetically challenging species, the Möbius-type molecule, has been attracting the scientific community with its elegant structure and aromaticity. Thus, combining two things together, synthesizing a carbon nanohoop with Möbius topology remains more challenging to date. Here we report a cyclophenylene featuring Möbius strip characterized by X-ray crystallography. Theoretical calculations reveal that such type of nanohoop is fully conjugated systems with electrons delocalized both in π sextets and the bridging carbon-carbon bonds. This work highlights that the manipulation of phenylene connection in a carbon nanohoop can help obtain more delicate and aesthetic molecular architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis SE. Chem Soc Rev, 2015, 44: 2221–2304

    Article  CAS  PubMed  Google Scholar 

  2. Tahara K, Tobe Y. Chem Rev, 2006, 106: 5274–5290

    Article  CAS  PubMed  Google Scholar 

  3. Segawa Y, Yagi A, Matsui K, Itami K. Angew Chem Int Ed, 2016, 55: 5136–5158

    Article  CAS  Google Scholar 

  4. Darzi ER, Jasti R. Chem Soc Rev, 2015, 44: 6401–6410

    Article  CAS  PubMed  Google Scholar 

  5. Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J Am Chem Soc, 2008, 130: 17646–17647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew Chem Int Ed, 2009, 48: 6112–6116

    Article  CAS  Google Scholar 

  7. Yamago S, Watanabe Y, Iwamoto T. Angew Chem Int Ed, 2010, 49: 757–759

    Article  CAS  Google Scholar 

  8. Omachi H, Matsuura S, Segawa Y, Itami K. Angew Chem Int Ed, 2010, 49: 10202–10205

    Article  CAS  Google Scholar 

  9. Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K. Angew Chem Int Ed, 2011, 50: 3244–3248

    Article  CAS  Google Scholar 

  10. Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S. J Am Chem Soc, 2011, 133: 8354–8361

    Article  CAS  PubMed  Google Scholar 

  11. Sisto TJ, Golder MR, Hirst ES, Jasti R. J Am Chem Soc, 2011, 133: 15800–15802

    Article  CAS  PubMed  Google Scholar 

  12. Xia J, Jasti R. Angew Chem Int Ed, 2012, 51: 2474–2476

    Article  CAS  Google Scholar 

  13. Kayahara E, Patel VK, Yamago S. J Am Chem Soc, 2014, 136: 2284–2287

    Article  CAS  PubMed  Google Scholar 

  14. Darzi ER, White BM, Loventhal LK, Zakharov LN, Jasti R. J Am Chem Soc, 2017, 139: 3106–3114

    Article  CAS  PubMed  Google Scholar 

  15. Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science, 2019, 365: 272–276

    Article  CAS  PubMed  Google Scholar 

  16. Lovell TC, Garrison ZR, Jasti R. Angew Chem Int Ed, 2020, 59: 14363–14367

    Article  CAS  Google Scholar 

  17. Qiu ZL, Tang C, Wang XR, Ju YY, Chu KS, Deng ZY, Hou H, Liu YM, Tan YZ. Angew Chem Int Ed, 2020, 59: 20868–20872

    Article  CAS  Google Scholar 

  18. Kayahara E, Kouyama T, Kato T, Takaya H, Yasuda N, Yamago S. Angew Chem Int Ed, 2013, 52: 13722–13726

    Article  CAS  Google Scholar 

  19. Toriumi N, Muranaka A, Kayahara E, Yamago S, Uchiyama M. J Am Chem Soc, 2015, 137: 82–85

    Article  CAS  PubMed  Google Scholar 

  20. Alvarez MP, Ruiz Delgado MC, Taravillo M, Baonza VG, López Navarrete JT, Evans P, Jasti R, Yamago S, Kertesz M, Casado J. Chem Sci, 2016, 7: 3494–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Solà M. Front Chem, 2013, 1: 22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356: 172–175

    Article  CAS  PubMed  Google Scholar 

  23. Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. J Am Chem Soc, 2018, 140: 10054–10059

    Article  CAS  PubMed  Google Scholar 

  24. Segawa Y, Omachi H, Itami K. Org Lett, 2010, 12: 2262–2265

    Article  CAS  PubMed  Google Scholar 

  25. Heilbronner E. Tetrahedron Lett, 1964, 5: 1923–1928

    Article  Google Scholar 

  26. Rzepa HS. Chem Rev, 2005, 105: 3697–3715

    Article  CAS  PubMed  Google Scholar 

  27. Herges R. Chem Rev, 2006, 106: 4820–4842

    Article  CAS  PubMed  Google Scholar 

  28. Yoon ZS, Osuka A, Kim D. Nat Chem, 2009, 1: 113–122

    Article  CAS  PubMed  Google Scholar 

  29. Jiang X, Laffoon JD, Chen D, Pérez-Estrada S, Danis AS, Rodríguez-López J, Garcia-Garibay MA, Zhu J, Moore JS. J Am Chem Soc, 2020, 142: 6493–6498

    Article  CAS  PubMed  Google Scholar 

  30. Ajami D, Oeckler O, Simon A, Herges R. Nature, 2003, 426: 819–821

    Article  CAS  PubMed  Google Scholar 

  31. Schaller GR, Topić F, Rissanen K, Okamoto Y, Shen J, Herges R. Nat Chem, 2014, 6: 608–613

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka T, Osuka A. Chem Rev, 2017, 117: 2584–2640

    Article  CAS  PubMed  Google Scholar 

  33. Fan YY, Chen D, Huang ZA, Zhu J, Tung CH, Wu LZ, Cong H. Nat Commun, 2018, 9: 3037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Naulet G, Sturm L, Robert A, Dechambenoit P, Röhricht F, Herges R, Bock H, Durola F. Chem Sci, 2018, 9: 8930–8936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benchouaia R, Cissé N, Boitrel B, Sollogoub M, Le Gac S, Ménand M. J Am Chem Soc, 2019, 141: 11583–11593

    Article  CAS  PubMed  Google Scholar 

  36. Nishigaki S, Shibata Y, Nakajima A, Okajima H, Masumoto Y, Osawa T, Muranaka A, Sugiyama H, Horikawa A, Uekusa H, Koshino H, Uchiyama M, Sakamoto A, Tanaka K. J Am Chem Soc, 2019, 141: 14955–14960

    Article  CAS  PubMed  Google Scholar 

  37. Luo Z, Yang X, Cai K, Fu X, Zhang D, Ma Y, Zhao D. Angew Chem Int Ed, 2020, 59: 14854–14860

    Article  CAS  Google Scholar 

  38. Lovell TC, Colwell CE, Zakharov LN, Jasti R. Chem Sci, 2019, 10: 3786–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caetano EWS, Freire VN, Dos Santos SG, Galvão DS, Sato F. J Chem Phys, 2008, 128: 164719

    Article  CAS  PubMed  Google Scholar 

  40. Ishii Y, Nakanishi Y, Omachi H, Matsuura S, Matsui K, Shinohara H, Segawa Y, Itami K. Chem Sci, 2012, 3: 2340–2345

    Article  CAS  Google Scholar 

  41. Omachi H, Segawa Y, Itami K. Acc Chem Res, 2012, 45: 1378–1389

    Article  CAS  PubMed  Google Scholar 

  42. Adamska L, Nayyar I, Chen H, Swan AK, Oldani N, Fernandez-Alberti S, Golder MR, Jasti R, Doorn SK, Tretiak S. Nano Lett, 2014, 14: 6539–6546

    Article  CAS  PubMed  Google Scholar 

  43. Bauernschmitt R, Ahlrichs R. Chem Phys Lett, 1996, 256: 454–464

    Article  CAS  Google Scholar 

  44. Yanai T, Tew DP, Handy NC. Chem Phys Lett, 2004, 393: 51–57

    Article  CAS  Google Scholar 

  45. Improta R, Barone V, Scalmani G, Frisch MJ. J Chem Phys, 2006, 125: 054103

    Article  PubMed  CAS  Google Scholar 

  46. Improta R, Scalmani G, Frisch MJ, Barone V. J Chem Phys, 2007, 127: 074504

    Article  PubMed  CAS  Google Scholar 

  47. Peña-Alvarez M, Qiu L, Taravillo M, Baonza VG, Delgado MCR, Yamago S, Jasti R, Navarrete JTL, Casado J, Kertesz M. Phys Chem Chem Phys, 2016, 18: 11683–11692

    Article  PubMed  CAS  Google Scholar 

  48. Szczepanik DW, Andrzejak M, Dyduch K, Żak E, Makowski M, Mazur G, Mrozek J. Phys Chem Chem Phys, 2014, 16: 20514–20523

    Article  CAS  PubMed  Google Scholar 

  49. Herges R, Geuenich D. J Phys Chem A, 2001, 105: 3214–3220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21873079, 21771155, 92061103, 21721001, 21573179), the Ministry of Science and Technology of China (2017YFA0204902), the Fundamental Research Funds for the Central Universities (20720180035), and the Top-Notch Young Talents Program of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Zhi Tan or Jun Zhu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, ZL., Chen, D., Deng, Z. et al. Isolation of a carbon nanohoop with Möbius topology. Sci. China Chem. 64, 1004–1008 (2021). https://doi.org/10.1007/s11426-021-9981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-9981-3

Keywords

Navigation